Your browser doesn't support javascript.
loading
CXC Chemokine Receptor 2 Accelerates Tubular Cell Senescence and Renal Fibrosis via ß-Catenin-Induced Mitochondrial Dysfunction.
Meng, Ping; Huang, Jiewu; Ling, Xian; Zhou, Shan; Wei, Jingyan; Zhu, Mingsheng; Miao, Jinhua; Shen, Weiwei; Li, Jiemei; Ye, Huiyun; Niu, Hongxin; Zhang, Yunfang; Zhou, Lili.
Afiliação
  • Meng P; Division of Nephrology, Nanfang Hospital, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, China.
  • Huang J; Department of Central Laboratory, Huadu District People's Hospital, Southern Medical University, Guangzhou, China.
  • Ling X; Division of Nephrology, Nanfang Hospital, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, China.
  • Zhou S; Division of Nephrology, Nanfang Hospital, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, China.
  • Wei J; Division of Nephrology, Nanfang Hospital, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, China.
  • Zhu M; Special Medical Service Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
  • Miao J; Department of Nephrology, The People's Hospital of Gaozhou, Maoming, China.
  • Shen W; Division of Nephrology, Nanfang Hospital, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, China.
  • Li J; Division of Nephrology, Nanfang Hospital, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, China.
  • Ye H; Division of Nephrology, Nanfang Hospital, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, China.
  • Niu H; Division of Nephrology, Nanfang Hospital, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, China.
  • Zhang Y; Special Medical Service Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
  • Zhou L; Department of Nephrology, Huadu District People's Hospital, Southern Medical University, Guangzhou, China.
Front Cell Dev Biol ; 10: 862675, 2022.
Article em En | MEDLINE | ID: mdl-35592244
ABSTRACT
Renal fibrosis is a common feature of various chronic kidney diseases (CKD). However, its underlying mechanism has not been totally clarified. C-X-C motif chemokine receptor (CXCR) family plays a role in renal fibrosis, however, detailed mechanisms have not been elucidated. Here, we report that CXCR2 has a potential role in tubular cell senescence and renal fibrosis, and is associated with ß-catenin-activated mitochondrial dysfunction. CXCR2 is one of most increased members among CXCR family in unilateral ureteral obstruction (UUO) mice. CXCR2 was expressed primarily in tubules and co-localized with p16INK4A, a cellular senescence marker, and ß-catenin. Administration of SB225002, a selective CXCR2 antagonist, significantly inhibited the activation of ß-catenin signaling, restored mitochondrial function, protected against tubular cell senescence and renal fibrosis in unilateral ureteral obstruction (UUO) mice. In unilateral ischemia-reperfusion injury (UIRI) mice, treatment with interlukin-8 (IL-8), the ligand of CXCR2, further aggravated ß-catenin activation, mitochondrial dysfunction, tubular cell senescence and renal fibrosis, whereas knockdown of p16INK4A inhibited IL-8-induced these effects. In vitro, SB225002 inhibited mitochondrial dysfunction and tubular cell senescence. Furthermore, ICG-001, a ß-catenin signaling blocker, significantly retarded CXCR2-induced cellular senescence and fibrotic changes. These results suggest that CXCR2 promotes tubular cell senescence and renal fibrosis through inducing ß-catenin-activated mitochondrial dysfunction.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Front Cell Dev Biol Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Front Cell Dev Biol Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China