Data Element Mapping in the Data Privacy Era.
Stud Health Technol Inform
; 294: 332-336, 2022 May 25.
Article
em En
| MEDLINE
| ID: mdl-35612087
Secondary use of health data is made difficult in part because of large semantic heterogeneity. Many efforts are being made to align local terminologies with international standards. With increasing concerns about data privacy, we focused here on the use of machine learning methods to align biological data elements using aggregated features that could be shared as open data. A 3-step methodology (features engineering, blocking strategy and supervised learning) was proposed. The first results, although modest, are encouraging for the future development of this approach.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Privacidade
/
Aprendizado de Máquina
Idioma:
En
Revista:
Stud Health Technol Inform
Assunto da revista:
INFORMATICA MEDICA
/
PESQUISA EM SERVICOS DE SAUDE
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
França