Predicting outcomes in patients with aortic stenosis using machine learning: the Aortic Stenosis Risk (ASteRisk) score.
Open Heart
; 9(1)2022 05.
Article
em En
| MEDLINE
| ID: mdl-35641101
OBJECTIVE: To use echocardiographic and clinical features to develop an explainable clinical risk prediction model in patients with aortic stenosis (AS), including those with low-gradient AS (LGAS), using machine learning (ML). METHODS: In 1130 patients with moderate or severe AS, we used bootstrap lasso regression (BLR), an ML method, to identify echocardiographic and clinical features important for predicting the combined outcome of all-cause mortality or aortic valve replacement (AVR) within 5 years after the initial echocardiogram. A separate hold out set, from a different centre (n=540), was used to test the generality of the model. We also evaluated model performance with respect to each outcome separately and in different subgroups, including patients with LGAS. RESULTS: Out of 69 available variables, 26 features were identified as predictive by BLR and expert knowledge was used to further reduce this set to 9 easily available and input features without loss of efficacy. A ridge logistic regression model constructed using these features had an area under the receiver operating characteristic curve (AUC) of 0.74 for the combined outcome of mortality/AVR. The model reliably identified patients at high risk of death in years 2-5 (HRs ≥2.0, upper vs other quartiles, for years 2-5, p<0.05, p=not significant in year 1) and was also predictive in the cohort with LGAS (n=383, HRs≥3.3, p<0.05). The model performed similarly well in the independent hold out set (AUC 0.78, HR ≥2.5 in years 1-5, p<0.05). CONCLUSION: In two separate longitudinal databases, ML identified prognostic features and produced an algorithm that predicts outcome for up to 5 years of follow-up in patients with AS, including patients with LGAS. Our algorithm, the Aortic Stenosis Risk (ASteRisk) score, is available online for public use.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Estenose da Valva Aórtica
/
Próteses Valvulares Cardíacas
/
Implante de Prótese de Valva Cardíaca
Tipo de estudo:
Etiology_studies
/
Prognostic_studies
/
Risk_factors_studies
Limite:
Humans
Idioma:
En
Revista:
Open Heart
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
Estados Unidos