Halide perovskites enable polaritonic XY spin Hamiltonian at room temperature.
Nat Mater
; 21(7): 761-766, 2022 07.
Article
em En
| MEDLINE
| ID: mdl-35681064
Exciton polaritons, the part-light and part-matter quasiparticles in semiconductor optical cavities, are promising for exploring Bose-Einstein condensation, non-equilibrium many-body physics and analogue simulation at elevated temperatures. However, a room-temperature polaritonic platform on par with the GaAs quantum wells grown by molecular beam epitaxy at low temperatures remains elusive. The operation of such a platform calls for long-lifetime, strongly interacting excitons in a stringent material system with large yet nanoscale-thin geometry and homogeneous properties. Here, we address this challenge by adopting a method based on the solution synthesis of excitonic halide perovskites grown under nanoconfinement. Such nanoconfinement growth facilitates the synthesis of smooth and homogeneous single-crystalline large crystals enabling the demonstration of XY Hamiltonian lattices with sizes up to 10 × 10. With this demonstration, we further establish perovskites as a promising platform for room temperature polaritonic physics and pave the way for the realization of robust mode-disorder-free polaritonic devices at room temperature.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Óxidos
/
Compostos de Cálcio
Idioma:
En
Revista:
Nat Mater
Assunto da revista:
CIENCIA
/
QUIMICA
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
Estados Unidos