AntiDMPpred: a web service for identifying anti-diabetic peptides.
PeerJ
; 10: e13581, 2022.
Article
em En
| MEDLINE
| ID: mdl-35722269
Diabetes mellitus (DM) is a chronic metabolic disease that has been a major threat to human health globally, causing great economic and social adversities. The oral administration of anti-diabetic peptide drugs has become a novel route for diabetes therapy. Numerous bioactive peptides have demonstrated potential anti-diabetic properties and are promising as alternative treatment measures to prevent and manage diabetes. The computational prediction of anti-diabetic peptides can help promote peptide-based drug discovery in the process of searching newly effective therapeutic peptide agents for diabetes treatment. Here, we resorted to random forest to develop a computational model, named AntiDMPpred, for predicting anti-diabetic peptides. A benchmark dataset with 236 anti-diabetic and 236 non-anti-diabetic peptides was first constructed. Four types of sequence-derived descriptors were used to represent the peptide sequences. We then combined four machine learning methods and six feature scoring methods to select the non-redundant features, which were fed into diverse machine learning classifiers to train the models. Experimental results show that AntiDMPpred reached an accuracy of 77.12% and area under the receiver operating curve (AUCROC) of 0.8193 in the nested five-fold cross-validation, yielding a satisfactory performance and surpassing other classifiers implemented in the study. The web service is freely accessible at http://i.uestc.edu.cn/AntiDMPpred/cgi-bin/AntiDMPpred.pl. We hope AntiDMPpred could improve the discovery of anti-diabetic bioactive peptides.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Peptídeos
/
Diabetes Mellitus
Tipo de estudo:
Prognostic_studies
Limite:
Humans
Idioma:
En
Revista:
PeerJ
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
China