Your browser doesn't support javascript.
loading
Biochemical, Biophysical and Functional Characterization of an Insoluble Iron Containing Hepcidin-Ferritin Chimeric Monomer Assembled Together with Human Ferritin H/L Chains at Different Molar Ratios.
Boumaiza, Mohamed; Fhoula, Imene; Carmona, Fernando; Poli, Maura; Asperti, Michela; Gianoncelli, Alessandra; Bertuzzi, Michela; Arosio, Paolo; Marzouki, Mohamed Nejib.
Afiliação
  • Boumaiza M; Laboratoire d'Ingénierie des Protéines et des Molécules Bioactives, Institut Nationale des Sciences Appliquées et de Technologie BP 676, Tunis 1080, Tunisia.
  • Fhoula I; Laboratoire Microorganismes et Biomolécules Actives, Faculté des Science de Tunis, Université de Tunis El Manar, Tunis 2092, Tunisia.
  • Carmona F; Molecular Biology Laboratory, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
  • Poli M; Molecular Biology Laboratory, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
  • Asperti M; Molecular Biology Laboratory, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
  • Gianoncelli A; Proteomics Platform, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
  • Bertuzzi M; Proteomics Platform, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
  • Arosio P; Molecular Biology Laboratory, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
  • Marzouki MN; Laboratoire d'Ingénierie des Protéines et des Molécules Bioactives, Institut Nationale des Sciences Appliquées et de Technologie BP 676, Tunis 1080, Tunisia.
Curr Issues Mol Biol ; 44(1): 117-127, 2021 Dec 28.
Article em En | MEDLINE | ID: mdl-35723388
ABSTRACT
Hepcidin and ferritin are key proteins of iron homeostasis in mammals. In this study, we characterize a chimera by fusing camel hepcidin to a human ferritin H-chain to verify if it retained the properties of the two proteins. The construct (HepcH) is expressed in E. coli in an insoluble and iron-containing form. To characterize it, the product was incubated with ascorbic acid and TCEP to reduce and solubilize the iron, which was quantified with ferrozine. HepcH bound approximately five times more iron than the wild type human ferritin, due to the presence of the hepcidin moiety. To obtain a soluble and stable product, the chimera was denatured and renatured together with different amounts of L-ferritin of the H-chain in order to produce 24-shell heteropolymers with different subunit proportions. They were analyzed by denaturing and non-denaturing PAGE and by mass spectroscopy. At the 15 ratio of HepcH to H- or L-ferritin, a stable and soluble molecule was obtained. Its biological activity was verified by its ability to both bind specifically cell lines that express ferroportin and to promote ferroportin degradation. This chimeric molecule showed the ability to bind both mouse J774 macrophage cells, as well as human HepG2 cells, via the hepcidin-ferroportin axis. We conclude that the chimera retains the properties of both hepcidin and ferritin and might be exploited for drug delivery.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Curr Issues Mol Biol Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Tunísia

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Curr Issues Mol Biol Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Tunísia