Your browser doesn't support javascript.
loading
Generation of Photocaged Nanobodies for Intracellular Applications in an Animal Using Genetic Code Expansion and Computationally Guided Protein Engineering.
O'Shea, Jack M; Goutou, Angeliki; Brydon, Jack; Sethna, Cyrus R; Wood, Christopher W; Greiss, Sebastian.
Afiliação
  • O'Shea JM; Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building George Square, Edinburgh, EH8 9XD, UK.
  • Goutou A; Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building George Square, Edinburgh, EH8 9XD, UK.
  • Brydon J; MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital Crewe Road South, Edinburgh, EH4 2XR, UK.
  • Sethna CR; Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building George Square, Edinburgh, EH8 9XD, UK.
  • Wood CW; Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Roger Land Building King's Buildings, Edinburgh, EH9 3JQ, UK.
  • Greiss S; Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building George Square, Edinburgh, EH8 9XD, UK.
Chembiochem ; 23(16): e202200321, 2022 08 17.
Article em En | MEDLINE | ID: mdl-35731601
ABSTRACT
Nanobodies are becoming increasingly popular as tools for manipulating and visualising proteins in vivo. The ability to control nanobody/antigen interactions using light could provide precise spatiotemporal control over protein function. We develop a general approach to engineer photo-activatable nanobodies using photocaged amino acids that are introduced into the target binding interface by genetic code expansion. Guided by computational alanine scanning and molecular dynamics simulations, we tune nanobody/target binding affinity to eliminate binding before uncaging. Upon photo-activation using 365 nm light, binding is restored. We use this approach to generate improved photocaged variants of two anti-GFP nanobodies that function robustly when directly expressed in a complex intracellular environment together with their antigen. We apply them to control subcellular protein localisation in the nematode worm Caenorhabditis elegans. Our approach applies predictions derived from computational modelling directly in a living animal and demonstrates the importance of accounting for in vivo effects on protein-protein interactions.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Anticorpos de Domínio Único Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Chembiochem Assunto da revista: BIOQUIMICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Anticorpos de Domínio Único Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Chembiochem Assunto da revista: BIOQUIMICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Reino Unido