Your browser doesn't support javascript.
loading
Nanocomposite conductive tough hydrogel based on metal coordination reinforced covalent Pluronic F-127 micelle network for human motion sensing.
Huang, Heyuan; Zhang, Xuanjia; Dong, Zhicheng; Zhao, Xin; Guo, Baolin.
Afiliação
  • Huang H; School of Aeronautics, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Aircraft Strength Research Institute, Aviation Industries of China, Xi'an, 710072, China.
  • Zhang X; School of Aeronautics, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
  • Dong Z; School of Aeronautics, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
  • Zhao X; State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China. Electronic address: zhaoxinbio@mail.xjtu.edu.cn.
  • Guo B; State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 71004
J Colloid Interface Sci ; 625: 817-830, 2022 Nov.
Article em En | MEDLINE | ID: mdl-35772209
ABSTRACT
The design of conductive hydrogels integrating anti-fatigue, high sensitivity, strong mechanical property and good sterilization performance remains a challenge. We innovatively introduced metal coordination in covalently crosslinked Pluronic F-127 micelle network and synthesized nanocomposite conductive tough hydrogel through the combination of covalent crosslinking, metal coordination and silver nanowire reinforcement. Compared with pure diacylated PF127 hydrogel (PF127), the tensile strength of PF-AA-AM-Al3+/Ag0.25 hydrogel reaching 1.4 MPa was about 10 times than that of PF127. The toughness of PF-AA-AM-Al3+/Ag0.25 reaches 1.88 MJ/m3. Compared with PF-AA-AM-Al3+, the introduction of silver nanowires increased the fatigue life of PF-AA-AM-Al3+/Ag0.25 by 200% (31837 cycles), 170% (12804 cycles) and 1022% (511 cycles) under 100%, 120% and 150% ultimate tensile strains, respectively. Besides, the PF-AA-AM-Al3+/Ag0.25 showed strain sensitivity to small deformation (Gauge factor = 2.42) in wearable tests on hands and knees. In addition, the PF-AA-AM-Al3+/Ag0.25 had good cytocompatibility and antibacterial performance that bacteria killing ratio of 98% to S. aureus and 99% to E. coli. Finally, a viscoelastic numerical constitutive model was established based on finite element method to study the damage failure history of the material. Comparative analysis showed that local stress concentration was the main factor leading to the failure of hydrogel.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poloxâmero / Micelas Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: J Colloid Interface Sci Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poloxâmero / Micelas Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: J Colloid Interface Sci Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China