Your browser doesn't support javascript.
loading
Seasonal variations of imidazoles in urban areas of Beijing and Guangzhou, China by single particle mass spectrometry.
Lian, Xiufeng; Tang, Guigang; Dao, Xu; Hu, Xiaodong; Xiong, Xin; Zhang, Guohua; Wang, Zaihua; Cheng, Chunlei; Wang, Xiaofei; Bi, Xinhui; Li, Lei; Li, Mei; Zhou, Zhen.
Afiliação
  • Lian X; Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China; State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of En
  • Tang G; China National Environmental Monitoring Centre, Beijing 100012, China.
  • Dao X; China National Environmental Monitoring Centre, Beijing 100012, China.
  • Hu X; State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China.
  • Xiong X; Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Qu
  • Zhang G; State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China.
  • Wang Z; State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Institute of Resources Utilization and Rare Earth Development, Gua
  • Cheng C; Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Qu
  • Wang X; Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, China.
  • Bi X; State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China.
  • Li L; Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Qu
  • Li M; Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Qu
  • Zhou Z; Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Qu
Sci Total Environ ; 844: 156995, 2022 Oct 20.
Article em En | MEDLINE | ID: mdl-35777561
ABSTRACT
Imidazoles (IMs) are potential contributors to brown carbon; they may notably contribute to climate radiative forcing. However, only a few studies have assessed the mixing state, seasonal and spatial distributions of IMs, and influencing factors for IM formation in urban aerosols. In this study, two single-particle aerosol mass spectrometers were employed to investigate the IM-containing particles in the urban areas of Beijing and Guangzhou, China. IM-containing particles were identified in the size range (dva) of 0.2-2.0 µm, accounting for 0.7-21.7 % of all the detected particles. The number fractions of IM-containing particles in both cities were the lowest in winter and the highest in spring, probably owing to the difference in the abundance of precursors and the particle acidity. Majority of (60-80 % by number) the IM-containing particles were mixed with organic carbon (OC), with the lowest fractions found in summer. Although the number fractions of IM-containing particles in Beijing were generally higher (~1.5-3 times) than those in Guangzhou, the mixing states of the IM-containing particles at these two sites were only slightly different. Potassium-rich (K-rich) and potassium-sodium (KNa) particles were rarely found in Guangzhou; they accounted for ~15 % of the IM-containing particles in Beijing. Additionally, our results indicate that particles with higher acidity are favorable for IM formation. These findings help improving our knowledge of the mixing state, seasonal variation, and spatial distribution of IMs in urban aerosols, and the insights in influencing factors into IM formation provide valuable information for future studies of the atmospheric chemical processes associated with IMs.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes Atmosféricos / Material Particulado Tipo de estudo: Prognostic_studies País/Região como assunto: Asia Idioma: En Revista: Sci Total Environ Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes Atmosféricos / Material Particulado Tipo de estudo: Prognostic_studies País/Região como assunto: Asia Idioma: En Revista: Sci Total Environ Ano de publicação: 2022 Tipo de documento: Article