SARS-CoV-2 infection in hamsters and humans results in lasting and unique systemic perturbations after recovery.
Sci Transl Med
; 14(664): eabq3059, 2022 09 28.
Article
em En
| MEDLINE
| ID: mdl-35857629
The host response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can result in prolonged pathologies collectively referred to as post-acute sequalae of COVID-19 (PASC) or long COVID. To better understand the mechanism underlying long COVID biology, we compared the short- and long-term systemic responses in the golden hamster after either SARS-CoV-2 or influenza A virus (IAV) infection. Results demonstrated that SARS-CoV-2 exceeded IAV in its capacity to cause permanent injury to the lung and kidney and uniquely affected the olfactory bulb (OB) and olfactory epithelium (OE). Despite a lack of detectable infectious virus, the OB and OE demonstrated myeloid and T cell activation, proinflammatory cytokine production, and an interferon response that correlated with behavioral changes extending a month after viral clearance. These sustained transcriptional changes could also be corroborated from tissue isolated from individuals who recovered from COVID-19. These data highlight a molecular mechanism for persistent COVID-19 symptomology and provide a small animal model to explore future therapeutics.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
COVID-19
Limite:
Animals
/
Humans
Idioma:
En
Revista:
Sci Transl Med
Assunto da revista:
CIENCIA
/
MEDICINA
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
Estados Unidos