Your browser doesn't support javascript.
loading
A versatile fluorescence-quenched substrate for quantitative measurement of glucocerebrosidase activity within live cells.
Deen, Matthew C; Zhu, Yanping; Gros, Christina; Na, Na; Gilormini, Pierre-André; Shen, David L; Bhosale, Sandeep; Anastasi, Nadia; Wang, RuiQi; Shan, Xiaoyang; Harde, Eva; Jagasia, Ravi; Lynn, Francis C; Vocadlo, David J.
Afiliação
  • Deen MC; Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
  • Zhu Y; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
  • Gros C; Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
  • Na N; Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
  • Gilormini PA; Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
  • Shen DL; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
  • Bhosale S; Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
  • Anastasi N; Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
  • Wang R; Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
  • Shan X; Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
  • Harde E; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
  • Jagasia R; Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
  • Lynn FC; Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
  • Vocadlo DJ; Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada.
Proc Natl Acad Sci U S A ; 119(29): e2200553119, 2022 07 19.
Article em En | MEDLINE | ID: mdl-35858317
ABSTRACT
Loss of activity of the lysosomal glycosidase ß-glucocerebrosidase (GCase) causes the lysosomal storage disease Gaucher disease (GD) and has emerged as the greatest genetic risk factor for the development of both Parkinson disease (PD) and dementia with Lewy bodies. There is significant interest into how GCase dysfunction contributes to these diseases, however, progress toward a full understanding is complicated by presence of endogenous cellular factors that influence lysosomal GCase activity. Indeed, such factors are thought to contribute to the high degree of variable penetrance of GBA mutations among patients. Robust methods to quantitatively measure GCase activity within lysosomes are therefore needed to advance research in this area, as well as to develop clinical assays to monitor disease progression and assess GCase-directed therapeutics. Here, we report a selective fluorescence-quenched substrate, LysoFQ-GBA, which enables measuring endogenous levels of lysosomal GCase activity within living cells. LysoFQ-GBA is a sensitive tool for studying chemical or genetic perturbations of GCase activity using either fluorescence microscopy or flow cytometry. We validate the quantitative nature of measurements made with LysoFQ-GBA using various cell types and demonstrate that it accurately reports on both target engagement by GCase inhibitors and the GBA allele status of cells. Furthermore, through comparisons of GD, PD, and control patient-derived tissues, we show there is a close correlation in the lysosomal GCase activity within monocytes, neuronal progenitor cells, and neurons. Accordingly, analysis of clinical blood samples using LysoFQ-GBA may provide a surrogate marker of lysosomal GCase activity in neuronal tissue.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Doença de Parkinson / Doença de Gaucher / Glucosilceramidase Tipo de estudo: Risk_factors_studies Limite: Humans Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Canadá

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Doença de Parkinson / Doença de Gaucher / Glucosilceramidase Tipo de estudo: Risk_factors_studies Limite: Humans Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Canadá