Enhancing the Peroxygenase Activity of a Cofactor-Independent Peroxyzyme by Directed Evolution Enabling Gram-Scale Epoxide Synthesis.
Chemistry
; 28(59): e202201651, 2022 Oct 21.
Article
em En
| MEDLINE
| ID: mdl-35861144
Peroxygenases selectively incorporate oxygen into organic molecules making use of the environmentally friendly oxidant H2 O2 with water being the sole by-product. These biocatalysts can provide 'green' routes for the synthesis of enantioenriched epoxides, which are fundamental intermediates in the production of pharmaceuticals. The peroxyzyme 4-oxalocrotonate tautomerase (4-OT), catalysing the epoxidation of a variety of α,ß-unsaturated aldehydes with H2 O2 , is outstanding because of its independence from any cost-intensive cofactor. However, its low-level peroxygenase activity and the decrease in the enantiomeric excess of the corresponding α,ß-epoxy-aldehydes under preparative-scale conditions is limiting the potential of 4-OT. Herein we report the directed evolution of a tandem-fused 4-OT variant, which showed an â¼150-fold enhanced peroxygenase activity compared to 4-OT wild type, enabling the synthesis of α,ß-epoxy-aldehydes in milligram- and gram-scale with high enantiopurity (up to 98 % ee) and excellent conversions. This engineered cofactor-independent peroxyzyme can provide new opportunities for the eco-friendly and practical synthesis of enantioenriched epoxides at large scale.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Aldeídos
/
Compostos de Epóxi
Idioma:
En
Revista:
Chemistry
Assunto da revista:
QUIMICA
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
Holanda