Your browser doesn't support javascript.
loading
Study on Forming Law and Penetration of a Spherical Cone Composite Structure Liner Based on the Explosion Pressure-Coupling Constraint Principle.
Han, Jilong; Du, Zhonghua; Zheng, Chao; Wang, Yongxu; Shang, Yuqing; Huang, Weiming; Wang, Xi; Zhao, Jinbei.
Afiliação
  • Han J; First Research Institute, Ningbo Branch of China Academy of Ordnance Sciences, Ningbo 315103, China.
  • Du Z; School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
  • Zheng C; First Research Institute, Ningbo Branch of China Academy of Ordnance Sciences, Ningbo 315103, China.
  • Wang Y; First Research Institute, Ningbo Branch of China Academy of Ordnance Sciences, Ningbo 315103, China.
  • Shang Y; Shanghai Electromechanical Engineering Research Institute, Shanghai 201109, China.
  • Huang W; First Research Institute, Ningbo Branch of China Academy of Ordnance Sciences, Ningbo 315103, China.
  • Wang X; First Research Institute, Ningbo Branch of China Academy of Ordnance Sciences, Ningbo 315103, China.
  • Zhao J; First Research Institute, Ningbo Branch of China Academy of Ordnance Sciences, Ningbo 315103, China.
Materials (Basel) ; 15(14)2022 Jul 07.
Article em En | MEDLINE | ID: mdl-35888217
ABSTRACT
The liner is an important part of shaped charge. In this paper, the spherical cone composite structure liner composed of a spherical missing body and truncated cone (hereinafter referred to as the SCS liner) is studied. The SCS liner is made of copper. Based on this, a shaped charge structure based on the explosion pressure-coupling constraint principle is designed, filling an 8701 explosive (RDX-based explosive). Through pulse X-ray tests, numerical simulation, and static explosion tests, the significance of the detonation pressure-coupling constraint principle, as well as the forming law and penetration efficiency of the SCS liner are studied. The results show that in the pulsed X-ray test, a split jet with high velocity is formed in the SCS liner. The explosion pressure-coupling constraint principle delays the attenuation of the internal explosion pressure and improves the shape of jet. After the SCS liner is selected, the penetration depth is increased by 70.38%. The average head velocity of the explosive charge jet is 7594.81 m/s. The diameter of the hole formed by the jet of the explosive charge is 20.33 mm. The hole expands inside, and the perforation depth is 178.87 mm. The numerical simulation is in good agreement with the test.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Materials (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Materials (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China