Your browser doesn't support javascript.
loading
Measurement of the mixing state of PAHs in individual particles and its effect on PAH transport in urban and remote areas and from major sources.
Lian, Xiufeng; Zhang, Guohua; Yang, Yuxiang; Chen, Mubai; Yang, Wenda; Cheng, Chunlei; Huang, Bo; Fu, Zhong; Bi, Xinhui; Zhou, Zhen; Li, Mei.
Afiliação
  • Lian X; Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, PR China; State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory o
  • Zhang G; State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Poll
  • Yang Y; State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China.
  • Chen M; Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, PR China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmenta
  • Yang W; Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, PR China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmenta
  • Cheng C; Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, PR China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmenta
  • Huang B; Guangzhou Hexin Analytical Instrument Company Limited, Guangzhou, 510530, China.
  • Fu Z; Guangzhou Hexin Analytical Instrument Company Limited, Guangzhou, 510530, China.
  • Bi X; State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Poll
  • Zhou Z; Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, PR China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmenta
  • Li M; Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, PR China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmenta
Environ Res ; 214(Pt 4): 114075, 2022 11.
Article em En | MEDLINE | ID: mdl-35963317
ABSTRACT
Although recent laboratory simulations have demonstrated that organic matter prevents the degradation of polycyclic aromatic hydrocarbons (PAHs), their role in the long-range transport of PAHs in the real atmosphere remains poorly understood. In this study, we measured the chemical composition and mixing state of PAHs-containing individual particles in aerosols from three sources, one urban area and one remote area. PAHs-containing particles were classified into five types organic carbon (OC), potassium mixed with organic carbon (KOC), potassium mixed with sodium (KNa), Krich and PAH-rich. The PAH-rich and KOC particles were the main types of particles produced by vehicle exhaust/coal burning and biomass burning, respectively, accounting for >50% of the PAHs-containing particles. It was found that organic matter enhancement of PAHs-containing particles occurs in the ambient atmosphere, with organic-rich (OC and KOC) particles accounting for >90%. Further analysis revealed that the increase in the fractions of PAHs was related to the mixing state with organic compounds due to the protection of organics against PAHs and/or the aging of PAHs-containing particles. The results of this study improve our understanding of the chemical composition and mixing state of PAHs particles in atmospheric aerosols from emission sources and urban and remote areas, and provide field observation evidence to support the promotion of the study of long-range transport of PAHs by organics.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Hidrocarbonetos Policíclicos Aromáticos / Poluentes Atmosféricos Idioma: En Revista: Environ Res Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Hidrocarbonetos Policíclicos Aromáticos / Poluentes Atmosféricos Idioma: En Revista: Environ Res Ano de publicação: 2022 Tipo de documento: Article