Your browser doesn't support javascript.
loading
Brain metabolic changes and clinical response to superolateral medial forebrain bundle deep brain stimulation for treatment-resistant depression.
Conner, Christopher R; Quevedo, Joao; Soares, Jair C; Fenoy, Albert J.
Afiliação
  • Conner CR; Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, TX, USA. christopher.r.conner@uth.tmc.edu.
  • Quevedo J; Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, TX, USA.
  • Soares JC; Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, TX, USA.
  • Fenoy AJ; Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, TX, USA. albert.j.fenoy@uth.tmc.edu.
Mol Psychiatry ; 27(11): 4561-4567, 2022 Nov.
Article em En | MEDLINE | ID: mdl-35982256
Deep brain stimulation (DBS) to the superolateral branch of the medial forebrain bundle is an efficacious therapy for treatment-resistant depression, providing rapid antidepressant effects. In this study, we use 18F-fluorodeoxyglucose-positron emission tomography (PET) to identify brain metabolic changes over 12 months post-DBS implantation in ten of our patients, compared to baseline. The primary outcome measure was a 50% reduction in Montgomery-Åsberg Depression Rating Scale (MADRS) score, which was interpreted as a response. Deterministic fiber tracking was used to individually map the target area; probabilistic tractography was used to identify modulated fiber tracts modeled using the cathodal contacts. Eight of the ten patients included in this study were responders. PET imaging revealed significant decreases in bilateral caudate, mediodorsal thalamus, and dorsal anterior cingulate cortex metabolism that was evident at 6 months and continued to 12 months post surgery. At 12 months post-surgery, significant left ventral prefrontal cortical metabolic decreases were also observed. Right caudate metabolic decrease at 12 months was significantly correlated with mean MADRS reduction. Probabilistic tractography modeling revealed that such metabolic changes lay along cortico-limbic nodes structurally connected to the DBS target site. Such observed metabolic changes following DBS correlated with clinical response provide insights into how future studies can elaborate such data to create biomarkers to predict response, the development of which likely will require multimodal imaging analysis.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Estimulação Encefálica Profunda / Transtorno Depressivo Resistente a Tratamento Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Mol Psychiatry Assunto da revista: BIOLOGIA MOLECULAR / PSIQUIATRIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Estimulação Encefálica Profunda / Transtorno Depressivo Resistente a Tratamento Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Mol Psychiatry Assunto da revista: BIOLOGIA MOLECULAR / PSIQUIATRIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos