Your browser doesn't support javascript.
loading
Predicting restriction of life-space mobility: a machine learning analysis of the IMIAS study.
Pérez-Trujillo, Manuel; Curcio, Carmen-Lucía; Duque-Méndez, Néstor; Delgado, Alejandra; Cano, Laura; Gomez, Fernando.
Afiliação
  • Pérez-Trujillo M; Departamento de Informática y Computación, Facultad de Administración, Grupo GAIA, Universidad Nacional de Colombia, Manizales, Colombia.
  • Curcio CL; Research Group in Geriatrics and Gerontology, Faculty of Health Sciences, Universidad de Caldas, Manizales, Colombia. carmen.curcio@ucaldas.edu.co.
  • Duque-Méndez N; Departamento de Informática y Computación, Facultad de Administración, Grupo GAIA, Universidad Nacional de Colombia, Manizales, Colombia.
  • Delgado A; Research Group in Geriatrics and Gerontology, Faculty of Health Sciences, Universidad de Caldas, Manizales, Colombia.
  • Cano L; Research Group in Geriatrics and Gerontology, Faculty of Health Sciences, Universidad de Caldas, Manizales, Colombia.
  • Gomez F; Research Group in Geriatrics and Gerontology, Faculty of Health Sciences, Universidad de Caldas, Manizales, Colombia.
Aging Clin Exp Res ; 34(11): 2761-2768, 2022 Nov.
Article em En | MEDLINE | ID: mdl-36070079
BACKGROUND: Some studies have employed machine learning (ML) methods for mobility prediction modeling in older adults. ML methods could be a helpful tool for life-space mobility (LSM) data analysis. AIM: This study aimed to evaluate the predictive value of ML algorithms for the restriction of life-space mobility (LSM) among elderly people and to identify the most important risk factors for that prediction model. METHODS: A 2-year LSM reduction prediction model was developed using the ML-based algorithms decision tree, random forest, and eXtreme gradient boosting (XGBoost), and tested on an independent validation cohort. The data were collected from the International Mobility in Aging Study (IMIAS) from 2012 to 2014, comprising 372 older patients (≥ 65 years of age). LSM was measured by the Life-Space Assessment questionnaire (LSA) with five levels of living space during the month before assessment. RESULTS: According to the XGBoost algorithm, the best model reached a mean absolute error (MAE) of 10.28 and root-mean-square error (RMSE) of 12.91 in the testing portion. The variables frailty (39.4%), mobility disability (25.4%), depression (21.9%), and female sex (13.3%) had the highest importance. CONCLUSION: The model identified risk factors through ML algorithms that could be used to predict LSM restriction; these risk factors could be used by practitioners to identify older adults with an increased risk of LSM reduction in the future. The XGBoost model offers benefits as a complementary method of traditional statistical approaches to understand the complexity of mobility.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Aprendizado de Máquina / Fragilidade Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies Limite: Aged / Humans Idioma: En Revista: Aging Clin Exp Res Assunto da revista: GERIATRIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Colômbia

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Aprendizado de Máquina / Fragilidade Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies Limite: Aged / Humans Idioma: En Revista: Aging Clin Exp Res Assunto da revista: GERIATRIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Colômbia