A high-performance genetically encoded fluorescent indicator for in vivo cAMP imaging.
Nat Commun
; 13(1): 5363, 2022 09 12.
Article
em En
| MEDLINE
| ID: mdl-36097007
cAMP is a key second messenger that regulates diverse cellular functions including neural plasticity. However, the spatiotemporal dynamics of intracellular cAMP in intact organisms are largely unknown due to low sensitivity and/or brightness of current genetically encoded fluorescent cAMP indicators. Here, we report the development of the new circularly permuted GFP (cpGFP)-based cAMP indicator G-Flamp1, which exhibits a large fluorescence increase (a maximum ΔF/F0 of 1100% in HEK293T cells), decent brightness, appropriate affinity (a Kd of 2.17 µM) and fast response kinetics (an association and dissociation half-time of 0.20 and 0.087 s, respectively). Furthermore, the crystal structure of the cAMP-bound G-Flamp1 reveals one linker connecting the cAMP-binding domain to cpGFP adopts a distorted ß-strand conformation that may serve as a fluorescence modulation switch. We demonstrate that G-Flamp1 enables sensitive monitoring of endogenous cAMP signals in brain regions that are implicated in learning and motor control in living organisms such as fruit flies and mice.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Diagnóstico por Imagem
/
Sistemas do Segundo Mensageiro
Tipo de estudo:
Diagnostic_studies
Limite:
Animals
/
Humans
Idioma:
En
Revista:
Nat Commun
Assunto da revista:
BIOLOGIA
/
CIENCIA
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
China