Your browser doesn't support javascript.
loading
Ambient volatile organic compounds in urban and industrial regions in Beijing: Characteristics, source apportionment, secondary transformation and health risk assessment.
Liu, Chengtang; Xin, Yanyan; Zhang, Chenglong; Liu, Junfeng; Liu, Pengfei; He, Xiaowei; Mu, Yujing.
Afiliação
  • Liu C; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China.
  • Xin Y; College of Environmental Engineering, Beijing Forestry University, Beijing 100083, China.
  • Zhang C; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China.
  • Liu J; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China.
  • Liu P; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China.
  • He X; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China.
  • Mu Y; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China. Electronic address: yjmu@rcees.ac.cn.
Sci Total Environ ; 855: 158873, 2023 Jan 10.
Article em En | MEDLINE | ID: mdl-36126704
ABSTRACT
Field measurements of volatile organic compounds (VOCs) were conducted simultaneously at an urban site and one industrial park site in Beijing in summer. The VOCs concentrations were 94.3 ± 157.8 ppbv and 20.7 ± 8.9 ppbv for industrial and urban sites, respectively. Alkanes and aromatics were the major contributors to VOCs in industrial site, while oxygenated volatile organic compounds (OVOCs) contributed most in urban site. The most abundant VOC species were n-pentane and formaldehyde for industrial site and urban site, respectively. The calculated ozone formation potential (OFP) and OH loss rates (LOH) were 621.1 ± 1491.9 ppbv (industrial site), 102.9 ± 37.3 ppbv (urban site), 22.0 ± 39.0 s-1 (industrial site) and 5.3 ± 2.2 s-1 (urban site), respectively. Based on the positive matrix factorization (PMF) model, solvent utilization I (34.1 %), solvent utilization II (27.9 %), mixture combustion source (19.3 %), OVOCs related source (9.6 %) and biogenic source (9.1 %) were identified in the industrial site, while OVOCs related source (27.8 %), vehicle exhaust (22.1 %), solvent utilization (19.3 %), coal combustion (16.0 %) and biogenic source (14.8 %) were identified in the urban site. The results of O3-VOCs-NOx sensitivity indicated that O3 formation were respectively under the VOC-limited and NOx-limited conditions in Beijing urban and industrial regions. Additionally, aromatics accounted remarkable SOA formation ability both in the two sites, and SOA potentials of xylene, toluene and ethylbenzene as the indicator species for the solvent utilization in industrial site were remarkable higher than those obtained in urban regions. The hazard index values in the industrial and urban sites were 1.72 and 3.39, respectively, suggesting a high non-carcinogenic risks to the exposed population. Formaldehyde had the highest carcinogenic risks in the two sites, and the cumulative carcinogenic risks in the industrial site and urban site were 1.95 × 10-5 and 1.21 × 10-5, respectively.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ozônio / Poluentes Atmosféricos / Compostos Orgânicos Voláteis País/Região como assunto: Asia Idioma: En Revista: Sci Total Environ Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ozônio / Poluentes Atmosféricos / Compostos Orgânicos Voláteis País/Região como assunto: Asia Idioma: En Revista: Sci Total Environ Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China