BioGPT: generative pre-trained transformer for biomedical text generation and mining.
Brief Bioinform
; 23(6)2022 11 19.
Article
em En
| MEDLINE
| ID: mdl-36156661
Pre-trained language models have attracted increasing attention in the biomedical domain, inspired by their great success in the general natural language domain. Among the two main branches of pre-trained language models in the general language domain, i.e. BERT (and its variants) and GPT (and its variants), the first one has been extensively studied in the biomedical domain, such as BioBERT and PubMedBERT. While they have achieved great success on a variety of discriminative downstream biomedical tasks, the lack of generation ability constrains their application scope. In this paper, we propose BioGPT, a domain-specific generative Transformer language model pre-trained on large-scale biomedical literature. We evaluate BioGPT on six biomedical natural language processing tasks and demonstrate that our model outperforms previous models on most tasks. Especially, we get 44.98%, 38.42% and 40.76% F1 score on BC5CDR, KD-DTI and DDI end-to-end relation extraction tasks, respectively, and 78.2% accuracy on PubMedQA, creating a new record. Our case study on text generation further demonstrates the advantage of BioGPT on biomedical literature to generate fluent descriptions for biomedical terms.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Processamento de Linguagem Natural
/
Mineração de Dados
Tipo de estudo:
Prognostic_studies
Idioma:
En
Revista:
Brief Bioinform
Assunto da revista:
BIOLOGIA
/
INFORMATICA MEDICA
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
China