Your browser doesn't support javascript.
loading
Bayesian regression and model selection for isothermal titration calorimetry with enantiomeric mixtures.
Nguyen, Trung Hai; La, Van N T; Burke, Kyle; Minh, David D L.
Afiliação
  • Nguyen TH; Laboratory of Theoretical and Computational Biophysics, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
  • La VNT; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
  • Burke K; Department of Biology, Illinois Institute of Technology, Chicago, IL, United States of America.
  • Minh DDL; Department of Chemistry, Illinois Institute of Technology, Chicago, IL, United States of America.
PLoS One ; 17(9): e0273656, 2022.
Article em En | MEDLINE | ID: mdl-36173969
Bayesian regression is performed to infer parameters of thermodynamic binding models from isothermal titration calorimetry measurements in which the titrant is an enantiomeric mixture. For some measurements the posterior density is multimodal, indicating that additional data with a different protocol are required to uniquely determine the parameters. Models of increasing complexity-two-component binding, racemic mixture, and enantiomeric mixture-are compared using model selection criteria. To precisely estimate one of these criteria, the Bayes factor, a variation of bridge sampling is developed.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Teorema de Bayes Tipo de estudo: Prognostic_studies Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Vietnã

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Teorema de Bayes Tipo de estudo: Prognostic_studies Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Vietnã