Your browser doesn't support javascript.
loading
Repression and 3D-restructuring resolves regulatory conflicts in evolutionarily rearranged genomes.
Ringel, Alessa R; Szabo, Quentin; Chiariello, Andrea M; Chudzik, Konrad; Schöpflin, Robert; Rothe, Patricia; Mattei, Alexandra L; Zehnder, Tobias; Harnett, Dermot; Laupert, Verena; Bianco, Simona; Hetzel, Sara; Glaser, Juliane; Phan, Mai H Q; Schindler, Magdalena; Ibrahim, Daniel M; Paliou, Christina; Esposito, Andrea; Prada-Medina, Cesar A; Haas, Stefan A; Giere, Peter; Vingron, Martin; Wittler, Lars; Meissner, Alexander; Nicodemi, Mario; Cavalli, Giacomo; Bantignies, Frédéric; Mundlos, Stefan; Robson, Michael I.
Afiliação
  • Ringel AR; Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
  • Szabo Q; Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France.
  • Chiariello AM; Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy.
  • Chudzik K; Max Planck Institute for Molecular Genetics, Berlin, Germany.
  • Schöpflin R; Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany.
  • Rothe P; Max Planck Institute for Molecular Genetics, Berlin, Germany.
  • Mattei AL; Max Planck Institute for Molecular Genetics, Berlin, Germany; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
  • Zehnder T; Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany.
  • Harnett D; Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
  • Laupert V; Max Planck Institute for Molecular Genetics, Berlin, Germany.
  • Bianco S; Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy.
  • Hetzel S; Max Planck Institute for Molecular Genetics, Berlin, Germany.
  • Glaser J; Max Planck Institute for Molecular Genetics, Berlin, Germany.
  • Phan MHQ; Max Planck Institute for Molecular Genetics, Berlin, Germany; Charité-Universitätsmedizin Berlin, BCRT-Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany.
  • Schindler M; Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany.
  • Ibrahim DM; Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany; Charité-Universitätsmedizin Berlin, BCRT-Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany.
  • Paliou C; Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Seville, Spain.
  • Esposito A; Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy.
  • Prada-Medina CA; Max Planck Institute for Molecular Genetics, Berlin, Germany; Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
  • Haas SA; Max Planck Institute for Molecular Genetics, Berlin, Germany.
  • Giere P; Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany.
  • Vingron M; Max Planck Institute for Molecular Genetics, Berlin, Germany.
  • Wittler L; Max Planck Institute for Molecular Genetics, Berlin, Germany.
  • Meissner A; Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
  • Nicodemi M; Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy; Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
  • Cavalli G; Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France.
  • Bantignies F; Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France.
  • Mundlos S; Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany; Charité-Universitätsmedizin Berlin, BCRT-Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany. Electronic address: mun
  • Robson MI; Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany; Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK. Electronic
Cell ; 185(20): 3689-3704.e21, 2022 09 29.
Article em En | MEDLINE | ID: mdl-36179666
ABSTRACT
Regulatory landscapes drive complex developmental gene expression, but it remains unclear how their integrity is maintained when incorporating novel genes and functions during evolution. Here, we investigated how a placental mammal-specific gene, Zfp42, emerged in an ancient vertebrate topologically associated domain (TAD) without adopting or disrupting the conserved expression of its gene, Fat1. In ESCs, physical TAD partitioning separates Zfp42 and Fat1 with distinct local enhancers that drive their independent expression. This separation is driven by chromatin activity and not CTCF/cohesin. In contrast, in embryonic limbs, inactive Zfp42 shares Fat1's intact TAD without responding to active Fat1 enhancers. However, neither Fat1 enhancer-incompatibility nor nuclear envelope-attachment account for Zfp42's unresponsiveness. Rather, Zfp42's promoter is rendered inert to enhancers by context-dependent DNA methylation. Thus, diverse mechanisms enabled the integration of independent Zfp42 regulation in the Fat1 locus. Critically, such regulatory complexity appears common in evolution as, genome wide, most TADs contain multiple independently expressed genes.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Placenta / Cromatina Tipo de estudo: Prognostic_studies Limite: Animals / Pregnancy Idioma: En Revista: Cell Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Placenta / Cromatina Tipo de estudo: Prognostic_studies Limite: Animals / Pregnancy Idioma: En Revista: Cell Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Alemanha