Your browser doesn't support javascript.
loading
BIONIC: biological network integration using convolutions.
Forster, Duncan T; Li, Sheena C; Yashiroda, Yoko; Yoshimura, Mami; Li, Zhijian; Isuhuaylas, Luis Alberto Vega; Itto-Nakama, Kaori; Yamanaka, Daisuke; Ohya, Yoshikazu; Osada, Hiroyuki; Wang, Bo; Bader, Gary D; Boone, Charles.
Afiliação
  • Forster DT; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
  • Li SC; The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.
  • Yashiroda Y; Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada.
  • Yoshimura M; The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.
  • Li Z; RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.
  • Isuhuaylas LAV; RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.
  • Itto-Nakama K; RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.
  • Yamanaka D; The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.
  • Ohya Y; The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.
  • Osada H; Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.
  • Wang B; Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan.
  • Bader GD; Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.
  • Boone C; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan.
Nat Methods ; 19(10): 1250-1261, 2022 10.
Article em En | MEDLINE | ID: mdl-36192463
ABSTRACT
Biological networks constructed from varied data can be used to map cellular function, but each data type has limitations. Network integration promises to address these limitations by combining and automatically weighting input information to obtain a more accurate and comprehensive representation of the underlying biology. We developed a deep learning-based network integration algorithm that incorporates a graph convolutional network framework. Our method, BIONIC (Biological Network Integration using Convolutions), learns features that contain substantially more functional information compared to existing approaches. BIONIC has unsupervised and semisupervised learning modes, making use of available gene function annotations. BIONIC is scalable in both size and quantity of the input networks, making it feasible to integrate numerous networks on the scale of the human genome. To demonstrate the use of BIONIC in identifying new biology, we predicted and experimentally validated essential gene chemical-genetic interactions from nonessential gene profiles in yeast.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Biônica / Algoritmos Limite: Humans Idioma: En Revista: Nat Methods Assunto da revista: TECNICAS E PROCEDIMENTOS DE LABORATORIO Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Canadá

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Biônica / Algoritmos Limite: Humans Idioma: En Revista: Nat Methods Assunto da revista: TECNICAS E PROCEDIMENTOS DE LABORATORIO Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Canadá