Your browser doesn't support javascript.
loading
Identification and characterization of miRNAome and target genes in Pseudostellaria heterophylla.
Li, Jun; Wang, Chongmin; Zhou, Tao; Jin, Haijun; Liu, Xiaoqing.
Afiliação
  • Li J; Guizhou University of Traditional Chinese Medicine, Guiyang, China.
  • Wang C; Guizhou University of Traditional Chinese Medicine, Guiyang, China.
  • Zhou T; Guizhou University of Traditional Chinese Medicine, Guiyang, China.
  • Jin H; Guizhou University of Traditional Chinese Medicine, Guiyang, China.
  • Liu X; Guizhou University of Traditional Chinese Medicine, Guiyang, China.
PLoS One ; 17(10): e0275566, 2022.
Article em En | MEDLINE | ID: mdl-36197881
ABSTRACT
miRNAs play a crucial role in the development and growth of plants by inhibiting the function of targeted genes at the post-transcription level. However, no miRNAs in Pseudostellaria heterophylla have been reported and their function in the morphogenesis of organs is still unclear. In this study, a total of 159 conserved miRNAs (belonging to 64 families) and 303 level miRNAs were identified from P. heterophylla. Some of them showed specifically up or down-regulated expression in different tissues and numbers of unigenes involved in Plant-pathogen interaction and MAPK signaling pathway-plant were targeted. The significant negative correlation of expression profiles between 30 miRNAs and their target genes (37 unigenes) was observed, respectively. Further, a large number of genes involved with signal transduction of auxin, zeatin, abscisic acid and, jasmonic acid were targeted. Predicated targets of two miRNAs were validated by 5'RLM-RACE, respectively. A large number of mRNAs from four pathogens were targeted by miRNAs from P. heterophylla and some of them were targeted by miR414. In summary, we reported a population of miRNAs from four different vegetative tissues of P. heterophylla by high throughput sequencing, which was analyzed by combining with the constructed transcriptome. These results may help to explain the function of miRNAs in the morphogenesis of organs and defense of pathogens, and may provide theoretical basis for breeding and genetic improvement of P. heterophylla.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Caryophyllaceae / MicroRNAs Tipo de estudo: Diagnostic_studies Limite: Humans Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Caryophyllaceae / MicroRNAs Tipo de estudo: Diagnostic_studies Limite: Humans Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China