Your browser doesn't support javascript.
loading
Anthocyanin Biosynthesis Associated with Natural Variation in Autumn Leaf Coloration in Quercus aliena Accessions.
Yang, Xiong; Yang, Ning; Zhang, Qian; Pei, Ziqi; Chang, Muxi; Zhou, Huirong; Ge, Yaoyao; Yang, Qinsong; Li, Guolei.
Afiliação
  • Yang X; Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China.
  • Yang N; Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China.
  • Zhang Q; Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China.
  • Pei Z; Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China.
  • Chang M; Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China.
  • Zhou H; Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China.
  • Ge Y; Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China.
  • Yang Q; Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China.
  • Li G; Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China.
Int J Mol Sci ; 23(20)2022 Oct 12.
Article em En | MEDLINE | ID: mdl-36293036
ABSTRACT
Quercus aliena is an economically important tree species and one of the dominant native oak species in China. Although its leaves typically turn yellow in autumn, we observed natural variants with red leaves. It is important to understand the mechanisms involved in leaf color variation in this species. Therefore, we compared a Q. aliena tree with yellow leaves and three variants with red leaves at different stages of senescence in order to determine the causes of natural variation. We found that the accumulation of anthocyanins such as cyanidin 3-O-glucoside and cyanidin 3-O-sambubiglycoside had a significant effect on leaf coloration. Gene expression analysis showed upregulation of almost all genes encoding enzymes involved in anthocyanin synthesis in the red-leaved variants during the early and main discoloration stages of senescence. These findings are consistent with the accumulation of anthocyanin in red variants. Furthermore, the variants showed significantly higher expression of transcription factors associated with anthocyanin synthesis, such as those encoded by genes QaMYB1 and QaMYB3. Our findings provide new insights into the physiological and molecular mechanisms involved in autumn leaf coloration in Q. aliena, as well as provide genetic resources for further development and cultivation of valuable ornamental variants of this species.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Quercus / Antocianinas Tipo de estudo: Risk_factors_studies Idioma: En Revista: Int J Mol Sci Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Quercus / Antocianinas Tipo de estudo: Risk_factors_studies Idioma: En Revista: Int J Mol Sci Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China