Your browser doesn't support javascript.
loading
Molecular Characterization and Drought Resistance of GmNAC3 Transcription Factor in Glycine max (L.) Merr.
Chen, Zhanyu; Yang, Xiaoqin; Tang, Minghao; Wang, Yujue; Zhang, Qian; Li, Huiying; Zhou, Ying; Sun, Fengjie; Cui, Xiyan.
Afiliação
  • Chen Z; College of Life Sciences, Jilin Agricultural University, Changchun 130118, China.
  • Yang X; College of Agronomy, Jilin Agricultural University, Changchun 130118, China.
  • Tang M; College of Life Sciences, Jilin Agricultural University, Changchun 130118, China.
  • Wang Y; College of Life Sciences, Jilin Agricultural University, Changchun 130118, China.
  • Zhang Q; College of Life Sciences, Jilin Agricultural University, Changchun 130118, China.
  • Li H; College of Life Sciences, Jilin Agricultural University, Changchun 130118, China.
  • Zhou Y; College of Life Sciences, Jilin Agricultural University, Changchun 130118, China.
  • Sun F; College of Life Sciences, Jilin Agricultural University, Changchun 130118, China.
  • Cui X; Department of Biological Sciences, School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA 30043, USA.
Int J Mol Sci ; 23(20)2022 Oct 16.
Article em En | MEDLINE | ID: mdl-36293235
Soybean transcription factor GmNAC plays important roles in plant resistance to environmental stresses. In this study, GmNAC3 was cloned in the drought tolerant soybean variety "Jiyu47", with the molecular properties of GmNAC3 characterized to establish its candidacy as a NAC transcription factor. The yeast self-activation experiments revealed the transcriptional activation activity of GmNAC3, which was localized in the nucleus by the subcellular localization analysis. The highest expression of GmNAC3 was detected in roots in the podding stage of soybean, and in roots of soybean seedlings treated with 20% PEG6000 for 12 h, which was 16 times higher compared with the control. In the transgenic soybean hairy roots obtained by the Agrobacterium-mediated method treated with 20% PEG6000 for 12 h, the activities of superoxide dismutase, peroxidase, and catalase and the content of proline were increased, the malondialdehyde content was decreased, and the expressions of stress resistance-related genes (i.e., APX2, LEA14, 6PGDH, and P5CS) were up-regulated. These expression patterns were confirmed by transgenic Arabidopsis thaliana with the overexpression of GmNAC3. This study provided strong scientific evidence to support further investigation of the regulatory function of GmNAC3 in plant drought resistance and the molecular mechanisms regulating the plant response to environmental stresses.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Arabidopsis / Secas Idioma: En Revista: Int J Mol Sci Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Arabidopsis / Secas Idioma: En Revista: Int J Mol Sci Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China