Your browser doesn't support javascript.
loading
Machine learning interatomic potentials for aluminium: application to solidification phenomena.
Jakse, Noel; Sandberg, Johannes; Granz, Leon F; Saliou, Anthony; Jarry, Philippe; Devijver, Emilie; Voigtmann, Thomas; Horbach, Jürgen; Meyer, Andreas.
Afiliação
  • Jakse N; Université Grenoble Alpes, CNRS, Grenoble INP, SIMaP, F-38000 Grenoble, France.
  • Sandberg J; Université Grenoble Alpes, CNRS, Grenoble INP, SIMaP, F-38000 Grenoble, France.
  • Granz LF; Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany.
  • Saliou A; Department of Physics, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.
  • Jarry P; Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany.
  • Devijver E; Department of Physics, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.
  • Voigtmann T; Université Grenoble Alpes, CNRS, Grenoble INP, SIMaP, F-38000 Grenoble, France.
  • Horbach J; C-TEC, Parc Economique Centr'alp, 725 rue Aristide Bergès, CS10027, Voreppe 38341 CEDEX, France.
  • Meyer A; Université Grenoble Alpes, CNRS, Grenoble INP, LIG, F-38000 Grenoble, France.
J Phys Condens Matter ; 51(3)2022 Nov 15.
Article em En | MEDLINE | ID: mdl-36301702
ABSTRACT
In studying solidification process by simulations on the atomic scale, the modeling of crystal nucleation or amorphization requires the construction of interatomic interactions that are able to reproduce the properties of both the solid and the liquid states. Taking into account rare nucleation events or structural relaxation under deep undercooling conditions requires much larger length scales and longer time scales than those achievable byab initiomolecular dynamics (AIMD). This problem is addressed by means of classical molecular dynamics simulations using a well established high dimensional neural network potential trained on a set of configurations generated by AIMD relevant for solidification phenomena. Our dataset contains various crystalline structures and liquid states at different pressures, including their time fluctuations in a wide range of temperatures. Applied to elemental aluminium, the resulting potential is shown to be efficient to reproduce the basic structural, dynamics and thermodynamic quantities in the liquid and undercooled states. Early stages of crystallization are further investigated on a much larger scale with one million atoms, allowing us to unravel features of the homogeneous nucleation mechanisms in the fcc phase at ambient pressure as well as in the bcc phase at high pressure with unprecedented accuracy close to theab initioone. In both cases, a single step nucleation process is observed.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: J Phys Condens Matter Assunto da revista: BIOFISICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: França

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: J Phys Condens Matter Assunto da revista: BIOFISICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: França