Your browser doesn't support javascript.
loading
Redundancy in Citrate and cis-Aconitate Transport in Pseudomonas aeruginosa.
Underhill, Simon A M; Cabeen, Matthew T.
Afiliação
  • Underhill SAM; Department of Microbiology and Molecular Genetics, Oklahoma State Universitygrid.65519.3e, Stillwater, Oklahoma, USA.
  • Cabeen MT; Department of Microbiology and Molecular Genetics, Oklahoma State Universitygrid.65519.3e, Stillwater, Oklahoma, USA.
J Bacteriol ; 204(12): e0028422, 2022 12 20.
Article em En | MEDLINE | ID: mdl-36321838
Tricarboxylates such as citrate are the preferred carbon sources for Pseudomonas aeruginosa, an opportunistic pathogen that causes chronic human infections. However, the membrane transport process for the tricarboxylic acid cycle intermediates citrate and cis-aconitate is poorly characterized. Transport is thought to be controlled by the TctDE two-component system, which mediates transcription of the putative major transporter OpdH. Here, we search for previously unidentified transporters of citrate and cis-aconitate using both protein homology and RNA sequencing approaches. We uncover new transporters and show that OpdH is not the major citrate importer; instead, citrate transport primarily relies on the tripartite TctCBA system, which is encoded in the opdH operon. Deletion of tctA causes a growth lag on citrate and loss of growth on cis-aconitate. Combinatorial deletion of newly discovered transporters can fully block citrate utilization. We then characterize transcriptional control of the opdH operon in tctDE mutants and show that loss of tctD blocks citrate utilization due to an inability to express opdH-tctCBA. However, tctE and tctDE mutants evolve heritable adaptations that restore growth on citrate as the sole carbon source. IMPORTANCE Pseudomonas aeruginosa is a bacterium that infects hospitalized patients and is often highly resistant to antibiotic treatment. It preferentially uses small organic acids called tricarboxylates rather than sugars as a source of carbon for growth. The transport of many of these molecules from outside the cell to the interior occurs through unknown channels. Here, we examined how the tricarboxylates citrate and cis-aconitate are transported in P. aeruginosa. We then sought to understand how production of proteins that permit citrate and cis-aconitate transport is regulated by a signaling system called TctDE. We identified new transporters for these molecules, clarified the function of a known transport system, and directly tied transporter expression to the presence of an intact TctDE system.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Pseudomonas aeruginosa / Ácido Cítrico Idioma: En Revista: J Bacteriol Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Pseudomonas aeruginosa / Ácido Cítrico Idioma: En Revista: J Bacteriol Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos