Your browser doesn't support javascript.
loading
Voltage-dependent synaptic plasticity: Unsupervised probabilistic Hebbian plasticity rule based on neurons membrane potential.
Garg, Nikhil; Balafrej, Ismael; Stewart, Terrence C; Portal, Jean-Michel; Bocquet, Marc; Querlioz, Damien; Drouin, Dominique; Rouat, Jean; Beilliard, Yann; Alibart, Fabien.
Afiliação
  • Garg N; Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, Sherbrooke, QC, Canada.
  • Balafrej I; Laboratoire Nanotechnologies Nanosystèmes (LN2)-CNRS UMI-3463, Université de Sherbrooke, Sherbrooke, QC, Canada.
  • Stewart TC; Institute of Electronics, Microelectronics and Nanotechnology (IEMN), Université de Lille, Villeneuve-d'Ascq, France.
  • Portal JM; Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, Sherbrooke, QC, Canada.
  • Bocquet M; Laboratoire Nanotechnologies Nanosystèmes (LN2)-CNRS UMI-3463, Université de Sherbrooke, Sherbrooke, QC, Canada.
  • Querlioz D; NECOTIS Research Lab, Department of Electrical and Computer Engineering, University of Sherbrooke, Sherbrooke, QC, Canada.
  • Drouin D; National Research Council Canada, University of Waterloo Collaboration Centre, Waterloo, ON, Canada.
  • Rouat J; Aix-Marseille Université, Université de Toulon, CNRS, IM2NP, Marseille, France.
  • Beilliard Y; Institute of Electronics, Microelectronics and Nanotechnology (IEMN), Université de Lille, Villeneuve-d'Ascq, France.
  • Alibart F; Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, Palaiseau, France.
Front Neurosci ; 16: 983950, 2022.
Article em En | MEDLINE | ID: mdl-36340782
ABSTRACT
This study proposes voltage-dependent-synaptic plasticity (VDSP), a novel brain-inspired unsupervised local learning rule for the online implementation of Hebb's plasticity mechanism on neuromorphic hardware. The proposed VDSP learning rule updates the synaptic conductance on the spike of the postsynaptic neuron only, which reduces by a factor of two the number of updates with respect to standard spike timing dependent plasticity (STDP). This update is dependent on the membrane potential of the presynaptic neuron, which is readily available as part of neuron implementation and hence does not require additional memory for storage. Moreover, the update is also regularized on synaptic weight and prevents explosion or vanishing of weights on repeated stimulation. Rigorous mathematical analysis is performed to draw an equivalence between VDSP and STDP. To validate the system-level performance of VDSP, we train a single-layer spiking neural network (SNN) for the recognition of handwritten digits. We report 85.01 ± 0.76% (Mean ± SD) accuracy for a network of 100 output neurons on the MNIST dataset. The performance improves when scaling the network size (89.93 ± 0.41% for 400 output neurons, 90.56 ± 0.27 for 500 neurons), which validates the applicability of the proposed learning rule for spatial pattern recognition tasks. Future work will consider more complicated tasks. Interestingly, the learning rule better adapts than STDP to the frequency of input signal and does not require hand-tuning of hyperparameters.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Front Neurosci Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Canadá

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Front Neurosci Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Canadá