Your browser doesn't support javascript.
loading
Plant microProteins: Small but powerful modulators of plant development.
Kushwaha, Amit Kumar; Dwivedi, Shubhi; Mukherjee, Arpan; Lingwan, Maneesh; Dar, Mansoor Ali; Bhagavatula, Lavanya; Datta, Sourav.
Afiliação
  • Kushwaha AK; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India.
  • Dwivedi S; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India.
  • Mukherjee A; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India.
  • Lingwan M; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India.
  • Dar MA; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India.
  • Bhagavatula L; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India.
  • Datta S; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India.
iScience ; 25(11): 105400, 2022 Nov 18.
Article em En | MEDLINE | ID: mdl-36353725
ABSTRACT
MicroProteins (miPs) are small and single-domain containing proteins of less than 20 kDa. This domain allows microProteins to interact with compatible domains of evolutionary-related proteins and fine-tuning the key physiological pathways in several organisms. Since the first report of a microProtein in mice, numerous microProteins have been identified in plants by computational approaches. However, only a few candidates have been functionally characterized, primarily in Arabidopsis. The recent success of synthetic microProteins in modulating physiological activities in crops makes these proteins interesting candidates for crop engineering. Here, we comprehensively summarise the synthesis, mode of action, and functional roles of microProteins in plants. We also discuss different approaches used to identify plant microProteins. Additionally, we discuss novel approaches to design synthetic microProteins that can be used to target proteins regulating plant growth and development. We finally highlight the prospects and challenges of utilizing microProteins in future crop improvement programs.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: IScience Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Índia

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: IScience Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Índia