Your browser doesn't support javascript.
loading
Emergence of distinct electronic states in epitaxially-fused PbSe quantum dot superlattices.
Kavrik, Mahmut S; Hachtel, Jordan A; Ko, Wonhee; Qian, Caroline; Abelson, Alex; Unlu, Eyup B; Kashyap, Harshil; Li, An-Ping; Idrobo, Juan C; Law, Matt.
Afiliação
  • Kavrik MS; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. mkavrik@lbl.gov.
  • Hachtel JA; Department of Materials Science and Engineering, University of California, San Diego, CA, USA. mkavrik@lbl.gov.
  • Ko W; Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA. hachtelja@ornl.gov.
  • Qian C; Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA. kow1@ornl.gov.
  • Abelson A; Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, USA.
  • Unlu EB; Department of Materials Science and Engineering, University of California, Irvine, CA, USA.
  • Kashyap H; Department of Materials Science and Engineering, University of California, San Diego, CA, USA.
  • Li AP; Department of Materials Science and Engineering, University of California, San Diego, CA, USA.
  • Idrobo JC; Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
  • Law M; Materials Science and Engineering Department, University of Washington, Seattle, WA, USA.
Nat Commun ; 13(1): 6802, 2022 Nov 10.
Article em En | MEDLINE | ID: mdl-36357374
ABSTRACT
Quantum coupling in arrayed nanostructures can produce novel mesoscale properties such as electronic minibands to improve the performance of optoelectronic devices, including ultra-efficient solar cells and infrared photodetectors. Colloidal PbSe quantum dots (QDs) that self-assemble into epitaxially-fused superlattices (epi-SLs) are predicted to exhibit such collective phenomena. Here, we show the emergence of distinct local electronic states induced by crystalline necks that connect individual PbSe QDs and modulate the bandgap energy across the epi-SL. Multi-probe scanning tunneling spectroscopy shows bandgap modulation from 0.7 eV in the QDs to 1.1 eV at their necks. Complementary monochromated electron energy-loss spectroscopy demonstrates bandgap modulation in spectral mapping, confirming the presence of these distinct energy states from necking. The results show the modification of the electronic structure of a precision-made nanoscale superlattice, which may be leveraged in new optoelectronic applications.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos