Your browser doesn't support javascript.
loading
An ethylene-responsive transcription factor and a B-box protein coordinate vegetative growth and photoperiodic flowering in chrysanthemum.
Cheng, Hua; Yu, Yao; Zhai, Yiwen; Wang, Lijun; Wang, Likai; Chen, Sumei; Chen, Fadi; Jiang, Jiafu.
Afiliação
  • Cheng H; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural Unive
  • Yu Y; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural Unive
  • Zhai Y; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural Unive
  • Wang L; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural Unive
  • Wang L; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural Unive
  • Chen S; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural Unive
  • Chen F; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural Unive
  • Jiang J; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural Unive
Plant Cell Environ ; 46(2): 440-450, 2023 02.
Article em En | MEDLINE | ID: mdl-36367211
ABSTRACT
Plants employ several endogenous and exogenous signals to guarantee timely floral transitions with floral integrators. To avoid premature flowering, flowering plants must control the balance between vegetative and floral development. As a Group II member of BBX family, CmBBX8 promotes flowering by directly activating CmFTL1 in summer-flowering chrysanthemum. However, the mechanisms underlying this floral transition is yet to be elucidated. Here, we report that the chrysanthemum ERF3 homologue, CmERF3, physically interacts with CmBBX8 through yeast two-hybrid (Y2H), bimolecular fluorescence complementation (BiFC), pull-down, and luciferase complementation (LCI) assays. We found that CmERF3 was highly expressed at the vegetative stage and rarely expressed in the reproductive phase, indicating that CmERF3 may play a critical role in maintaining vegetative growth to prevent premature flowering. Rhythm analysis revealed that CmERF3 had a different response to rhythm compared to CmBBX8. Knockdown of CmERF3 facilitated floral initiation, whereas overexpression of CmERF3 delayed floral transition. We further found that CmERF3 repressed the transactivation activity of CmBBX8 on the downstream CmFTL1 gene. Collectively, our results indicate that the CmERF3-CmBBX8 transcriptional complex is a crucial module that balances the vegetative growth and reproductive development of chrysanthemum.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Chrysanthemum Idioma: En Revista: Plant Cell Environ Assunto da revista: BOTANICA Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Chrysanthemum Idioma: En Revista: Plant Cell Environ Assunto da revista: BOTANICA Ano de publicação: 2023 Tipo de documento: Article