Your browser doesn't support javascript.
loading
QSAR model to predict Kp,uu,brain with a small dataset, incorporating predicted values of related parameter.
Umemori, Y; Handa, K; Sakamoto, S; Kageyama, M; Iijima, T.
Afiliação
  • Umemori Y; Toxicology & DMPK Research Department, Teijin Institute for Bio-medical Research, Teijin Pharma Limited, Hino-shi, Japan.
  • Handa K; Toxicology & DMPK Research Department, Teijin Institute for Bio-medical Research, Teijin Pharma Limited, Hino-shi, Japan.
  • Sakamoto S; Pharmaceutical Development Coordination Department, Teijin Pharma Limited, Chiyoda-ku, Japan.
  • Kageyama M; Toxicology & DMPK Research Department, Teijin Institute for Bio-medical Research, Teijin Pharma Limited, Hino-shi, Japan.
  • Iijima T; Toxicology & DMPK Research Department, Teijin Institute for Bio-medical Research, Teijin Pharma Limited, Hino-shi, Japan.
SAR QSAR Environ Res ; 33(11): 885-897, 2022 Nov.
Article em En | MEDLINE | ID: mdl-36420623
The unbound brain-to-plasma concentration ratio (Kp,uu,brain) is a parameter that indicates the extent of central nervous system penetration. Pharmaceutical companies build prediction models because many experiments are required to obtain Kp,uu,brain. However, the lack of data hinders the design of an accurate prediction model. To construct a quantitative structure-activity relationship (QSAR) model with a small dataset of Kp,uu,brain, we investigated whether the prediction accuracy could be improved by incorporating software-predicted brain penetration-related parameters (BPrPs) as explanatory variables for pharmacokinetic parameter prediction. We collected 88 compounds with experimental Kp,uu,brain from various official publications. Random forest was used as the machine learning model. First, we developed prediction models using only structural descriptors. Second, we verified the predictive accuracy of each model with the predicted values of BPrPs incorporated in various combinations. Third, the Kp,uu,brain of the in-house compounds was predicted and compared with the experimental values. The prediction accuracy was improved using five-fold cross-validation (RMSE = 0.455, r2 = 0.726) by incorporating BPrPs. Additionally, this model was verified using an external in-house dataset. The result suggested that using BPrPs as explanatory variables improve the prediction accuracy of the Kp,uu,brain QSAR model when the available number of datasets is small.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Encéfalo / Relação Quantitativa Estrutura-Atividade Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: SAR QSAR Environ Res Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Japão

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Encéfalo / Relação Quantitativa Estrutura-Atividade Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: SAR QSAR Environ Res Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Japão