Your browser doesn't support javascript.
loading
Testing for EGFR Variants in Pleural and Pericardial Effusion Cell-Free DNA in Patients With Non-Small Cell Lung Cancer.
Lee, Kirsty W C; Li, Molly S C; Gai, Wanxia; Lau, Yat Ming; Chan, Allen K C; Chan, Oscar S H; Lee, Chee Khoon; Yeung, Rebecca M W; Fung, Sherwood Y H; Cheung, Wai F; Chan, Vivian W; Leung, Linda; Kam, Kenny N P; Mok, Tony S K.
Afiliação
  • Lee KWC; Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong.
  • Li MSC; Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong.
  • Gai W; State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong.
  • Lau YM; Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong.
  • Chan AKC; Department of Clinical Oncology, Prince of Wales Hospital, Hong Kong.
  • Chan OSH; Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong.
  • Lee CK; Department of Clinical Oncology, Pamela Youde Nethersole Eastern Hospital, Hong Kong.
  • Yeung RMW; National Health and Medical Research Council (NHMRC) Clinical Trials Centre, The University of Sydney, Sydney, New South Wales, Australia.
  • Fung SYH; Department of Clinical Oncology, Pamela Youde Nethersole Eastern Hospital, Hong Kong.
  • Cheung WF; Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong.
  • Chan VW; Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong.
  • Leung L; Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong.
  • Kam KNP; Department of Clinical Oncology, Prince of Wales Hospital, Hong Kong.
  • Mok TSK; Department of Clinical Oncology, Prince of Wales Hospital, Hong Kong.
JAMA Oncol ; 9(2): 261-265, 2023 02 01.
Article em En | MEDLINE | ID: mdl-36580285
Importance: Molecular testing in non-small cell lung cancer (NSCLC) is commonly limited by inadequate tumor sample. Plasma cell-free DNA (cfDNA) genotyping as a complementary test is specific but only moderately sensitive. Genotyping of cfDNA in pleural and pericardial effusion (PE-cfDNA) can further optimize molecular diagnostic yield and reduce the need for repeated biopsies. Objective: To prospectively validate droplet digital polymerase chain reaction (ddPCR) for detection of sensitizing EGFR variants and acquired Thr790Met variant (T790M) from PE-cfDNA in patients with NSCLC. Design, Setting, and Participants: This prospective diagnostic validation study was conducted between September 6, 2016, and January 21, 2021 at 2 major Hong Kong cancer centers. Patients with advanced NSCLC with both wild-type and variant EGFR status and exudative PE who underwent thoracocentesis or pericardiocentesis were randomly enrolled. Patients were either EGFR-tyrosine kinase inhibitor (TKI) naive (cohort 1) or EGFR-TKI treated but osimertinib naive (cohort 2). Enrolled patients underwent pleural- or pericardial-fluid and blood sampling for ddPCR EGFR testing. EGFR status results with ddPCR testing of PE-cfDNA and blood were compared with EGFR status in matched tumor biopsy or PE cell block samples. Main Outcomes and Measures: Specificity, sensitivity, and concordance of PE-cfDNA for detection of sensitizing EGFR variants and acquired T790M variation. Results: Among 171 patients (54% female) enrolled, there were 104 in cohort 1 and 67 in cohort 2. In cohort 1, 37% (38/102) were EGFR-variant positive; PE-cfDNA showed 97% sensitivity (95% CI, 92%-100%), 97% specificity (95% CI, 93%-100%), and 97% concordance (ĸ = 0.94, P < .001) for the detection of sensitizing EGFR variants. It was more sensitive than plasma in detecting sensitizing EGFR variants (97% vs 74%, P < .001). In cohort 2, 38% (15 of 40) were positive for the EGFR T790M variant; PE-cfDNA showed 87% sensitivity (95% CI, 69%-100%), 60% specificity (95% CI, 41%-79%), and 70% concordance (ĸ = 0.42, P = .004) for acquired T790M. The EGFR T790M variant was detected in 51% of PE-cfDNA vs 25% of PE cell block samples. Conclusions and Relevance: In this diagnostic study, EGFR variants could be accurately detected from PE-cfDNA in patients with NSCLC. More EGFR T790M was detected in PE-cfDNA than in guideline-recommended PE cell block preparations. These results suggest that PE-cfDNA can complement plasma and tumor genotyping for detecting EGFR variants in patients with advanced NSCLC.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Derrame Pericárdico / Carcinoma Pulmonar de Células não Pequenas / Ácidos Nucleicos Livres / Neoplasias Pulmonares Tipo de estudo: Guideline Limite: Female / Humans / Male Idioma: En Revista: JAMA Oncol Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Hong Kong

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Derrame Pericárdico / Carcinoma Pulmonar de Células não Pequenas / Ácidos Nucleicos Livres / Neoplasias Pulmonares Tipo de estudo: Guideline Limite: Female / Humans / Male Idioma: En Revista: JAMA Oncol Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Hong Kong