Your browser doesn't support javascript.
loading
A non-collinear autocorrelator for single-shot characterization of ultrabroadband terahertz pulses.
Sun, Fang-Zheng; Liao, Guo-Qian; Lei, Hong-Yi; Wang, Tian-Ze; Wei, Yan-Yu; Wang, Dan; Chen, Hao; Liu, Feng; Li, Yu-Tong; Zhang, Jie.
Afiliação
  • Sun FZ; Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
  • Liao GQ; Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
  • Lei HY; Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
  • Wang TZ; Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
  • Wei YY; Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
  • Wang D; Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
  • Chen H; Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
  • Liu F; Key Laboratory for Laser Plasmas (MoE), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.
  • Li YT; Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
  • Zhang J; Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
Rev Sci Instrum ; 93(12): 123003, 2022 Dec 01.
Article em En | MEDLINE | ID: mdl-36586913
ABSTRACT
Conventional terahertz (THz) waveform or spectral diagnostics mainly employ the electro-optic-based techniques or the multi-shot Michelson interferometer. Simultaneously, single-shot, ultrabroadband THz spectral measurements remain challenging. In this paper, a novel probe-free scheme based on the non-collinear autocorrelation technique is proposed to characterize the ultrabroadband THz spectrum at a single-shot mode. The non-collinear autocorrelator is a modified beam-division interferometer, in which the two beams are recombined non-collinearly onto a camera. The temporal or spectral resolution and range depend on the noncollinear configuration and camera parameters. This simple approach has been applied experimentally to characterize the ultrashort THz pulse generated from ultraintense laser-solid interactions, demonstrating the capability of single-shot ultrabroadband measurements without an auxiliary ultrafast laser probe. The proposed non-collinear autocorrelator here would be much useful for characterization and applications of low-repetition-rate intense THz sources and could also be extended to other frequency bands.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Rev Sci Instrum Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Rev Sci Instrum Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China