Prediction of pathologic complete response to neoadjuvant systemic therapy in triple negative breast cancer using deep learning on multiparametric MRI.
Sci Rep
; 13(1): 1171, 2023 01 20.
Article
em En
| MEDLINE
| ID: mdl-36670144
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer. Neoadjuvant systemic therapy (NAST) followed by surgery are currently standard of care for TNBC with 50-60% of patients achieving pathologic complete response (pCR). We investigated ability of deep learning (DL) on dynamic contrast enhanced (DCE) MRI and diffusion weighted imaging acquired early during NAST to predict TNBC patients' pCR status in the breast. During the development phase using the images of 130 TNBC patients, the DL model achieved areas under the receiver operating characteristic curves (AUCs) of 0.97 ± 0.04 and 0.82 ± 0.10 for the training and the validation, respectively. The model achieved an AUC of 0.86 ± 0.03 when evaluated in the independent testing group of 32 patients. In an additional prospective blinded testing group of 48 patients, the model achieved an AUC of 0.83 ± 0.02. These results demonstrated that DL based on multiparametric MRI can potentially differentiate TNBC patients with pCR or non-pCR in the breast early during NAST.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Neoplasias da Mama
/
Neoplasias de Mama Triplo Negativas
/
Aprendizado Profundo
/
Imageamento por Ressonância Magnética Multiparamétrica
Tipo de estudo:
Observational_studies
/
Prognostic_studies
/
Risk_factors_studies
Limite:
Female
/
Humans
Idioma:
En
Revista:
Sci Rep
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
Estados Unidos