Your browser doesn't support javascript.
loading
Driver Identification Using Statistical Features of Motor Activity and Genetic Algorithms.
Espino-Salinas, Carlos H; Luna-García, Huizilopoztli; Celaya-Padilla, José M; Morgan-Benita, Jorge A; Vera-Vasquez, Cesar; Sarmiento, Wilson J; Galván-Tejada, Carlos E; Galván-Tejada, Jorge I; Gamboa-Rosales, Hamurabi; Villalba-Condori, Klinge Orlando.
Afiliação
  • Espino-Salinas CH; Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Jardín Juarez 147, Centro, Zacatecas 98000, Mexico.
  • Luna-García H; Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Jardín Juarez 147, Centro, Zacatecas 98000, Mexico.
  • Celaya-Padilla JM; CONACYT, Universidad Autónoma de Zacatecas, Jardín Juarez 147, Centro, Zacatecas 98000, Mexico.
  • Morgan-Benita JA; Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Jardín Juarez 147, Centro, Zacatecas 98000, Mexico.
  • Vera-Vasquez C; Ingeniería Mecanica, Universidad Continental, Arequipa 04002, Peru.
  • Sarmiento WJ; Ingeniería en Multimedia, Universidad Militar de Nueva Granada, Cra 11, Bogotá 101-80, Colombia.
  • Galván-Tejada CE; Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Jardín Juarez 147, Centro, Zacatecas 98000, Mexico.
  • Galván-Tejada JI; Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Jardín Juarez 147, Centro, Zacatecas 98000, Mexico.
  • Gamboa-Rosales H; Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Jardín Juarez 147, Centro, Zacatecas 98000, Mexico.
  • Villalba-Condori KO; Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04002, Peru.
Sensors (Basel) ; 23(2)2023 Jan 10.
Article em En | MEDLINE | ID: mdl-36679580
Driver identification refers to the process whose primary purpose is identifying the person behind the steering wheel using collected information about the driver him/herself. The constant monitoring of drivers through sensors generates great benefits in advanced driver assistance systems (ADAS), to learn more about the behavior of road users. Currently, there are many research works that address the subject in search of creating intelligent models that help to identify vehicle users in an efficient and objective way. However, the different methodologies proposed to create these models are based on data generated from sensors that include different vehicle brands on routes established in real environments, which, although they provide very important information for different purposes, in the case of driver identification, there may be a certain degree of bias due to the different situations in which the route environment may change. The proposed method seeks to intelligently and objectively select the most outstanding statistical features from motor activity generated in the main elements of the vehicle with genetic algorithms for driver identification, this process being newer than those established by the state-of-the-art. The results obtained from the proposal were an accuracy of 90.74% to identify two drivers and 62% for four, using a Random Forest Classifier (RFC). With this, it can be concluded that a comprehensive selection of features can greatly optimize the identification of drivers.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Condução de Veículo Tipo de estudo: Diagnostic_studies Limite: Humans / Male Idioma: En Revista: Sensors (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: México

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Condução de Veículo Tipo de estudo: Diagnostic_studies Limite: Humans / Male Idioma: En Revista: Sensors (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: México