Efficient production of Antrodin C by microparticle-enhanced cultivation of medicinal mushroom Antrodia cinnamomea.
J Biosci Bioeng
; 135(3): 232-237, 2023 Mar.
Article
em En
| MEDLINE
| ID: mdl-36693775
The microparticle-enhanced cultivation (MPEC) was used to enhance the production of Antrodin C by submerged fermentation of medicinal mushroom Antrodia cinnamomea. The crucial factors such as types, sizes, concentrations, and addition time of microparticles were optimized. The mechanism of MPEC on the membrane permeability and fluidity of A. cinnamomea and the expression of key genes in Antrodin C were investigated. When talc (18 µm, 2 g/L) was added into the fermentation liquid at 0 h, the promoting effect on Antrodin C was the best. The maximum yield of Antrodin C was 1615.7 mg/L, which was about 2.98 times of the control (541.7 mg/L). Talc slightly damaged the mycelia of A. cinnamomea, increased the release of intracellular constituents, and enhanced the index of unsaturated fatty acid. In addition, the key genes (IDI, E2.3.3.10, HMGCR, atoB) that might play an important role in the synthesis of the triquine-type sesquiterpene Antrodin C, were upregulated. In conclusion, talc increased the permeability and fluidity of cell membrane, upregulated the key genes and improved the biosynthesis process to enhance the yield of Antrodin C in the submerged fermentation of A. cinnamomea.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Agaricales
/
Antrodia
Idioma:
En
Revista:
J Biosci Bioeng
Assunto da revista:
ENGENHARIA BIOMEDICA
/
MICROBIOLOGIA
Ano de publicação:
2023
Tipo de documento:
Article