Your browser doesn't support javascript.
loading
Cation valence dependence of hydrogen bond and stacking potentials in DNA mesoscopic models.
Muniz, Maria Izabel; Bustos, Adrian H; Slott, Sofie; Astakhova, Kira; Weber, Gerald.
Afiliação
  • Muniz MI; Departamento de Física, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil.
  • Bustos AH; Department of Chemistry, Technical University of Denmark, 206-207 Kemitorvet, 2800 Kongens Lyngby, Denmark.
  • Slott S; Department of Chemistry, Technical University of Denmark, 206-207 Kemitorvet, 2800 Kongens Lyngby, Denmark.
  • Astakhova K; Department of Chemistry, Technical University of Denmark, 206-207 Kemitorvet, 2800 Kongens Lyngby, Denmark.
  • Weber G; Departamento de Física, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil. Electronic address: gweber@ufmg.br.
Biophys Chem ; 294: 106949, 2023 03.
Article em En | MEDLINE | ID: mdl-36706510
ABSTRACT
Monovalent and divalent cations play a crucial role in living cells and for molecular techniques such as PCR. Here we evaluate DNA melting temperatures in magnesium (Mg2+) and magnesium­potassium (Mg2++ K+) buffers with a mesoscopic model that allows us to estimate hydrogen bonds and stacking interaction potentials. The Mg2+ and Mg2++ K+ results are compared to previous calculations for sodium ions (Na+), in terms of equivalent sodium concentration and ionic strength. Morse potentials, related to hydrogen bonding, were found to be essentially constant and unaffected by cation conditions. However, for stacking interactions we find a clear dependence with ionic strength and cation valence. The highest ionic strength variations, for both hydrogen bonds and stacking interactions, was found at the sequence terminals. This suggests that end-to-end interactions in DNA will be strongly dependent on cation valence and ionic strength.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: DNA / Magnésio Idioma: En Revista: Biophys Chem Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Brasil

Texto completo: 1 Base de dados: MEDLINE Assunto principal: DNA / Magnésio Idioma: En Revista: Biophys Chem Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Brasil