Your browser doesn't support javascript.
loading
Genome-Wide Association Study Discovers Novel Germplasm Resources and Genetic Loci with Resistance to Gibberella Ear Rot Caused by Fusarium graminearum.
Yuan, Guangsheng; He, Dandan; Shi, Jiaxin; Li, Youliang; Yang, Yan; Du, Juan; Zou, Chaoying; Ma, Langlang; Gao, Shibin; Pan, Guangtang; Shen, Yaou.
Afiliação
  • Yuan G; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
  • He D; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
  • Shi J; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
  • Li Y; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
  • Yang Y; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
  • Du J; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
  • Zou C; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
  • Ma L; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
  • Gao S; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
  • Pan G; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
  • Shen Y; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
Phytopathology ; 113(7): 1317-1324, 2023 Jul.
Article em En | MEDLINE | ID: mdl-36721376
ABSTRACT
Gibberella ear rot (GER) in maize caused by Fusarium graminearum is one of the most devastating maize diseases reducing grain yield and quality worldwide. The genetic bases of maize GER resistance remain largely unknown. Using artificial inoculation across multiple environments, the GER severity of an association panel consisting of 316 diverse inbred lines was observed with wide phenotypic variation. In the association panel, a genome-wide association study using a general linear model identified 69 single-nucleotide polymorphisms (SNPs) significantly associated with GER resistance at the threshold of 2.04 × 10-5, and the average phenotypic variation explained (PVE) of these SNPs was 5.09%. We also conducted a genome-wide association study analysis using a mixed linear model at a threshold of 1.0 × 10-4, and 16 significantly associated SNPs with an average PVE of 4.73% were detected. A combined general linear model and mixed linear model method obtained 10 co-localized significantly associated SNPs linked to GER resistance, including the most significant SNP (PZE-105079915) with the greatest PVE value, 9.07%, at bin 5.05 following 10 candidate genes. These findings are significant for the exploration of the complicated genetic variations in maize GER resistance. The regions and genes identified herein provide a list of candidate targets for further investigation, in addition to the elite germplasm resources that can be used for breeding GER resistance in maize.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fusarium / Gibberella Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Phytopathology Assunto da revista: BOTANICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fusarium / Gibberella Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Phytopathology Assunto da revista: BOTANICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China