Identification of Active Pulmonary Tuberculosis Among Patients With Positive Interferon-Gamma Release Assay Results: Value of a Deep Learning-based Computer-aided Detection System in Different Scenarios of Implementation.
J Thorac Imaging
; 38(3): 145-153, 2023 May 01.
Article
em En
| MEDLINE
| ID: mdl-36744946
PURPOSE: To evaluate the accuracy of a deep learning-based computer-aided detection (CAD) system in identifying active pulmonary tuberculosis on chest radiographs (CRs) of patients with positive interferon-gamma release assay (IGRA) results in different scenarios of clinical implementation. MATERIALS AND METHODS: We collected the CRs of consecutive patients with positive IGRA results. Findings of active pulmonary tuberculosis on CRs were independently evaluated by the CAD and a thoracic radiologist, followed by interpretation using the CAD. Sensitivity and specificity were evaluated in different scenarios: (a) radiologists' interpretation, (b) radiologists' CAD-assisted interpretation, and (c) CAD-based prescreening (radiologists' interpretation for positive CAD results only). We conducted a reader test to compare the accuracy of the CAD with those of 5 radiologists. RESULTS: Among 1780 patients (men, 53.8%; median age, 56 y), 44 (2.5%) were diagnosed with active pulmonary tuberculosis. The CAD-assisted interpretation exhibited a higher sensitivity (81.8% vs. 72.7%; P =0.046) but lower specificity than the radiologists' interpretation (84.1% vs. 85.7%; P <0.001). The CAD-based prescreening exhibited a higher specificity than the radiologists' interpretation (88.8% vs. 85.7%; P <0.001) at the same sensitivity, with a workload reduction of 85.2% (1780 to 263). In the reader test, the CAD exhibited a higher sensitivity than radiologists (72.7% vs. 59.5%; P =0.005) at the same specificity (88.0%), and CAD-assisted interpretation significantly improved the sensitivity of radiologists' interpretation (72.3%; P <0.001). CONCLUSIONS: For identifying active pulmonary tuberculosis among patients with positive IGRA results, deep learning-based CAD can enhance the sensitivity of interpretation. CAD-based prescreening may reduce the radiologists' workload at an improved specificity.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Tuberculose
/
Tuberculose Pulmonar
/
Aprendizado Profundo
Tipo de estudo:
Diagnostic_studies
/
Observational_studies
/
Prognostic_studies
Limite:
Humans
/
Male
/
Middle aged
Idioma:
En
Revista:
J Thorac Imaging
Assunto da revista:
DIAGNOSTICO POR IMAGEM
Ano de publicação:
2023
Tipo de documento:
Article