Your browser doesn't support javascript.
loading
In-depth unveiling the interfacial adsorption mechanism of triazine derivatives as corrosion inhibitors for carbon steel in carbon dioxide saturated oilfield produced water.
Wang, X; Xu, W L; Li, Y Y; Jiang, Z N; Zeng, X Q; Zhang, G A.
Afiliação
  • Wang X; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
  • Xu WL; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
  • Li YY; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
  • Jiang ZN; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
  • Zeng XQ; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
  • Zhang GA; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China. Electronic address: zha
J Colloid Interface Sci ; 639: 107-123, 2023 Jun.
Article em En | MEDLINE | ID: mdl-36804784
ABSTRACT
In this work, two triazine derivatives (BTT-1 and BTT-2) were synthesized by the simple one-step condensation of three components and used as high-efficient corrosion inhibitors to deal with the corrosion issue of carbon steel (CS) in petroleum industry. Electrochemical tests indicate that both BTT-1 and BTT-2 present superior inhibition performance with the inhibition efficiency of 97.9 % and 98.4 % at a low concentration of 0.18 mM, respectively. Quantum chemical calculations reveal that compared to BTT-1 molecule with a butyl chain, the introduction of benzyl group endows BTT-2 molecule with more adsorption sites, which favors the adsorption of BTT-2 molecule on CS surface. Furthermore, the GFN-xTB calculations demonstrate that BTT-1 and BTT-2 could adsorb on CS surface through the formation of Fe-N and Fe-S bonds. Compared to BTT-1, BTT-2 exhibits stronger adsorption on CS surface by forming more and shorter bonds with a more negative adsorption energy, which accounts for the better inhibitive performance of BTT-2.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: J Colloid Interface Sci Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: J Colloid Interface Sci Ano de publicação: 2023 Tipo de documento: Article