SPATA2 suppresses epithelial-mesenchymal transition to inhibit metastasis and radiotherapy sensitivity in non-small cell lung cancer via impairing DVL1/ß-catenin signaling.
Thorac Cancer
; 14(11): 969-982, 2023 04.
Article
em En
| MEDLINE
| ID: mdl-36814090
Metastasis is the major cause of cancer-related death of cancer patients. Epithelial-mesenchymal transition (EMT) is one critical process during the cascade of tumor metastasis. EMT is a developmental program exploited by cancer cells to transition from epithelial state to mesenchymal state and confers metastatic properties as well as treatment resistance. Finding factors to inhibit EMT will greatly improve the prognosis patients. Spermatogenesis associated 2 (SPATA2) was originally isolated from human testis and proved playing a role in spermatogenesis. To date, however, the role of SPATA2 in oncogenesis is unknown. In the current study, by mining the public database and validating in a cohort of collected non-small cell lung cancer (NSCLC) specimens, we uncovered that the expression of SPATA2 positively correlated with the prognosis of patients and was an independent prognosis marker in NSCLC. Functional studies proved that ectopic overexpression of SPATA2 inhibited EMT resulting in impaired motility and invasiveness properties in vitro and metastasis in vivo, and increased radiosensitivity in NSCLC. Mechanistic investigation showed that SPATA2 could suppress the ß-catenin signaling via attenuating DVL1 ubiquitination to achieve the functions. Taken together, the current study revealed an inhibitory role of SPATA2 on EMT and that SPATA2 could be a potential target for therapy of NSCLC.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Carcinoma Pulmonar de Células não Pequenas
/
Neoplasias Pulmonares
Tipo de estudo:
Diagnostic_studies
/
Prognostic_studies
Limite:
Humans
/
Male
Idioma:
En
Revista:
Thorac Cancer
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
China