Canonical Wnt signaling regulates soft palate development by mediating ciliary homeostasis.
Development
; 150(5)2023 03 01.
Article
em En
| MEDLINE
| ID: mdl-36825984
Craniofacial morphogenesis requires complex interactions involving different tissues, signaling pathways, secreted factors and organelles. The details of these interactions remain elusive. In this study, we have analyzed the molecular mechanisms and homeostatic cellular activities governing soft palate development to improve regenerative strategies for individuals with cleft palate. We have identified canonical Wnt signaling as a key signaling pathway primarily active in cranial neural crest (CNC)-derived mesenchymal cells surrounding soft palatal myogenic cells. Using Osr2-Cre;ß-cateninfl/fl mice, we show that Wnt signaling is indispensable for mesenchymal cell proliferation and subsequently for myogenesis through mediating ciliogenesis. Specifically, we have identified that Wnt signaling directly regulates expression of the ciliary gene Ttll3. Impaired ciliary disassembly leads to differentiation defects in mesenchymal cells and indirectly disrupts myogenesis through decreased expression of Dlk1, a mesenchymal cell-derived pro-myogenesis factor. Moreover, we show that siRNA-mediated reduction of Ttll3 expression partly rescues mesenchymal cell proliferation and myogenesis in the palatal explant cultures from Osr2-Cre;ß-cateninfl/fl embryos. This study highlights the role of Wnt signaling in palatogenesis through the control of ciliary homeostasis, which establishes a new mechanism for Wnt-regulated craniofacial morphogenesis.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Fissura Palatina
/
Via de Sinalização Wnt
Tipo de estudo:
Prognostic_studies
Limite:
Animals
Idioma:
En
Revista:
Development
Assunto da revista:
BIOLOGIA
/
EMBRIOLOGIA
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
Estados Unidos