Your browser doesn't support javascript.
loading
Improved performance of InGaAs/AlGaAs quantum well lasers on silicon using InAlAs trapping layers.
Opt Express ; 31(5): 7900-7906, 2023 Feb 27.
Article em En | MEDLINE | ID: mdl-36859911
ABSTRACT
InGaAs/AlGaAs multiple quantum well lasers grown on silicon (001) by molecular beam epitaxy have been demonstrated. By inserting InAlAs trapping layers into AlGaAs cladding layers, misfit dislocations easily located in the active region can be effectively transferred out of the active region. For comparison, the same laser structure without the InAlAs trapping layers was also grown. All these as-grown materials were fabricated into Fabry-Perot lasers with the same cavity size of 20 × 1000 µm2. The laser with trapping layers achieved a 2.7-fold reduction in threshold current density under pulsed operation (5 µs-pulsed width, 1%-duty cycle) compared to the counterpart, and further realized a room-temperature continuous-wave lasing with a threshold current of 537 mA which corresponds to a threshold current density of 2.7 kA/cm2. When the injection current reached 1000 mA, the single-facet maximum output power and slope efficiency were 45.3 mW and 0.143 W/A, respectively. This work demonstrates significantly improved performances of InGaAs/AlGaAs quantum well lasers monolithically grown on silicon, providing a feasible solution to optimize the InGaAs quantum well structure.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Opt Express Assunto da revista: OFTALMOLOGIA Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Opt Express Assunto da revista: OFTALMOLOGIA Ano de publicação: 2023 Tipo de documento: Article