Your browser doesn't support javascript.
loading
Oxygen toxicity causes cyclic damage by destabilizing specific Fe-S cluster-containing protein complexes.
Baik, Alan H; Haribowo, Augustinus G; Chen, Xuewen; Queliconi, Bruno B; Barrios, Alec M; Garg, Ankur; Maishan, Mazharul; Campos, Alexandre R; Matthay, Michael A; Jain, Isha H.
Afiliação
  • Baik AH; Department of Medicine, Division of Cardiology, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone Institutes, San Francisco, CA 94158, USA.
  • Haribowo AG; Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
  • Chen X; Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA.
  • Queliconi BB; Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
  • Barrios AM; Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
  • Garg A; Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
  • Maishan M; Cardiovascular Research Institute, UCSF, San Francisco, CA 94143, USA.
  • Campos AR; Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
  • Matthay MA; Cardiovascular Research Institute, UCSF, San Francisco, CA 94143, USA; Departments of Medicine and Anesthesia, University of California, San Francisco, San Francisco, CA 94143, USA.
  • Jain IH; Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA. Electronic address: isha.jain@gladstone.ucsf.edu.
Mol Cell ; 83(6): 942-960.e9, 2023 03 16.
Article em En | MEDLINE | ID: mdl-36893757
ABSTRACT
Oxygen is toxic across all three domains of life. Yet, the underlying molecular mechanisms remain largely unknown. Here, we systematically investigate the major cellular pathways affected by excess molecular oxygen. We find that hyperoxia destabilizes a specific subset of Fe-S cluster (ISC)-containing proteins, resulting in impaired diphthamide synthesis, purine metabolism, nucleotide excision repair, and electron transport chain (ETC) function. Our findings translate to primary human lung cells and a mouse model of pulmonary oxygen toxicity. We demonstrate that the ETC is the most vulnerable to damage, resulting in decreased mitochondrial oxygen consumption. This leads to further tissue hyperoxia and cyclic damage of the additional ISC-containing pathways. In support of this model, primary ETC dysfunction in the Ndufs4 KO mouse model causes lung tissue hyperoxia and dramatically increases sensitivity to hyperoxia-mediated ISC damage. This work has important implications for hyperoxia pathologies, including bronchopulmonary dysplasia, ischemia-reperfusion injury, aging, and mitochondrial disorders.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Hiperóxia / Doenças Mitocondriais Tipo de estudo: Etiology_studies / Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Mol Cell Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Hiperóxia / Doenças Mitocondriais Tipo de estudo: Etiology_studies / Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Mol Cell Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos