Your browser doesn't support javascript.
loading
Ultrathin Nitrogen-Doped Carbon Encapsulated Ni Nanoparticles for Highly Efficient Electrochemical CO2 Reduction and Aqueous Zn-CO2 Batteries.
Wang, Fangyuan; Wang, Guan; Deng, Peilin; Chen, Yao; Li, Jing; Wu, Daoxiong; Wang, Zhitong; Wang, Chongtai; Hua, Yingjie; Tian, Xinlong.
Afiliação
  • Wang F; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China.
  • Wang G; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China.
  • Deng P; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China.
  • Chen Y; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China.
  • Li J; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China.
  • Wu D; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China.
  • Wang Z; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China.
  • Wang C; Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Provinc, School of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, P. R. China.
  • Hua Y; Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Provinc, School of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, P. R. China.
  • Tian X; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China.
Small ; 19(25): e2301128, 2023 Jun.
Article em En | MEDLINE | ID: mdl-36919799
Electrochemical CO2 reduction reaction (CO2 RR), powered by renewable electricity, has attracted great attention for producing high value-added fuels and chemicals, as well as feasibly mitigating CO2 emission problem. Here, this work reports a facile hard template strategy to prepare the Ni@N-C catalyst with core-shell structure, where nickel nanoparticles (Ni NPs) are encapsulated by thin nitrogen-doped carbon shells (N-C shells). The Ni@N-C catalyst has demonstrated a promising industrial current density of 236.7 mA cm-2 with the superb FECO of 97% at -1.1 V versus RHE. Moreover, Ni@N-C can drive the reversible Zn-CO2 battery with the largest power density of 1.64 mW cm-2 , and endure a tough cycling durability. These excellent performances are ascribed to the synergistic effect of Ni@N-C that Ni NPs can regulate the electronic microenvironment of N-doped carbon shells, which favor to enhance the CO2 adsorption capacity and the electron transfer capacity. Density functional theory calculations prove that the binding configuration of N-C located on the top of Ni slabs (Top-Ni@N-C) is the most thermodynamically stable and possess a lowest thermodynamic barrier for the formation of COOH* and the desorption of CO. This work may pioneer a new method on seeking high-efficiency and worthwhile electrocatalysts for CO2 RR and Zn-CO2 battery.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2023 Tipo de documento: Article