Your browser doesn't support javascript.
loading
Computational Metabolomics to Elucidate Molecular Signaling and Regulatory Mechanisms Associated with Biostimulant-Mediated Growth Promotion and Abiotic Stress Tolerance in Crop Plants.
Othibeng, Kgalaletso; Nephali, Lerato; Tugizimana, Fidele.
Afiliação
  • Othibeng K; Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa.
  • Nephali L; Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa.
  • Tugizimana F; Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa. Fidele.Tugizimana@omnia.co.za.
Methods Mol Biol ; 2642: 163-177, 2023.
Article em En | MEDLINE | ID: mdl-36944878
Biostimulants show potentials as sustainable strategies for improved crop development and stress resilience. However, the cellular and molecular mechanisms, in particular the signaling and regulatory events, governing the agronomically observed positive effects of biostimulants on plants remain enigmatic, thus hampering novel formulation and exploration of biostimulants. Metabolomics offers opportunities to elucidate metabolic and regulatory processes that define biostimulant-induced changes in the plant's biochemistry and physiology, thus contributing to decode the modes of action of biostimulants. Here, we describe an application of metabolomics to elucidate biostimulant effects on crop plants. Using the case study of a humic substance (HS)-based biostimulant applied on maize plants, under normal and nutrient-starved stress conditions, this chapter proposes key methodological guidance and considerations of computational metabolomics approach to investigate metabolic and regulatory reconfiguration and networks underlying biostimulant-induced physiological changes in plants. Computational metabolome mining tools, in the Global Natural Products Social Molecular Networking (GNPS) ecosystem, are highlighted as well as metabolic pathway and network analysis for biological interpretation of the data.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ecossistema / Metabolômica Tipo de estudo: Risk_factors_studies Idioma: En Revista: Methods Mol Biol Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2023 Tipo de documento: Article País de afiliação: África do Sul

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ecossistema / Metabolômica Tipo de estudo: Risk_factors_studies Idioma: En Revista: Methods Mol Biol Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2023 Tipo de documento: Article País de afiliação: África do Sul