Your browser doesn't support javascript.
loading
Single Nucleotide Polymorphisms of the RAC1 Gene as Novel Susceptibility Markers for Neuropathy and Microvascular Complications in Type 2 Diabetes.
Azarova, Iuliia; Klyosova, Elena; Polonikov, Alexey.
Afiliação
  • Azarova I; Department of Biological Chemistry, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russia.
  • Klyosova E; Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russia.
  • Polonikov A; Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russia.
Biomedicines ; 11(3)2023 Mar 22.
Article em En | MEDLINE | ID: mdl-36979960
Single nucleotide polymorphisms (SNP) in the RAC1 (Rac family small GTPase 1) gene have recently been linked to type 2 diabetes (T2D) and hyperglycemia due to their contribution to impaired redox homeostasis. The present study was designed to determine whether the common SNPs of the RAC1 gene are associated with diabetic complications such as neuropathy (DN), retinopathy (DR), nephropathy, angiopathy of the lower extremities (DA), and diabetic foot syndrome. A total of 1470 DNA samples from T2D patients were genotyped for six common SNPs by the MassArray Analyzer-4 system. The genotype rs7784465-T/C of RAC1 was associated with an increased risk of DR (p = 0.016) and DA (p = 0.03) in males, as well as with DR in females (p = 0.01). Furthermore, the SNP rs836478 showed an association with DR (p = 0.005) and DN (p = 0.025) in males, whereas the SNP rs10238136 was associated with DA in females (p = 0.002). In total, three RAC1 haplotypes showed significant associations (FDR < 0.05) with T2D complications in a sex-specific manner. The study's findings demonstrate, for the first time, that the RAC1 gene's polymorphisms represent novel and sex-specific markers of neuropathy and microvascular complications in type 2 diabetes, and that the gene could be a new target for the pharmacological inhibition of oxidative stress as a means of preventing diabetic complications.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Biomedicines Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Federação Russa

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Biomedicines Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Federação Russa