Integrating biomechanics in evolutionary studies, with examples from the amphidromous goby model system.
J Exp Biol
; 226(Suppl_1)2023 04 25.
Article
em En
| MEDLINE
| ID: mdl-37021688
The functional capacities of animals are a primary factor determining survival in nature. In this context, understanding the biomechanical performance of animals can provide insight into diverse aspects of their biology, ranging from ecological distributions across habitat gradients to the evolutionary diversification of lineages. To survive and reproduce in the face of environmental pressures, animals must perform a wide range of tasks, some of which entail tradeoffs between competing demands. Moreover, the demands encountered by animals can change through ontogeny as they grow, sexually mature or migrate across environmental gradients. To understand how mechanisms that underlie functional performance contribute to survival and diversification across challenging and variable habitats, we have pursued diverse studies of the comparative biomechanics of amphidromous goby fishes across functional requirements ranging from prey capture and fast-start swimming to adhesion and waterfall climbing. The pan-tropical distribution of these fishes has provided opportunities for repeated testing of evolutionary hypotheses. By synthesizing data from the lab and field, across approaches spanning high-speed kinematics, selection trials, suction pressure recordings, mechanical property testing, muscle fiber-type measurements and physical modeling of bioinspired designs, we have clarified how multiple axes of variation in biomechanical performance associate with the ecological and evolutionary diversity of these fishes. Our studies of how these fishes meet both common and extreme functional demands add new, complementary perspectives to frameworks developed from other systems, and illustrate how integrating knowledge of the mechanical underpinnings of diverse aspects of performance can give critical insights into ecological and evolutionary questions.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Evolução Biológica
/
Peixes
Tipo de estudo:
Prognostic_studies
Limite:
Animals
Idioma:
En
Revista:
J Exp Biol
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
Estados Unidos