Implications of Electron Transport Layer and Back Metal Contact Variations in Tin-Lead Perovskite Solar Cells Assessed by Spectroscopic Ellipsometry and External Quantum Efficiency.
ACS Appl Mater Interfaces
; 15(15): 19730-19740, 2023 Apr 19.
Article
em En
| MEDLINE
| ID: mdl-37022937
The structural and optical properties of hybrid organic-inorganic metal halide perovskite solar cells are measured by spectroscopic ellipsometry to reveal an optically distinct interfacial layer among the back contact metal, charge transport, and absorber layers. Understanding how this interfacial layer impacts performance is essential for developing higher performing solar cells. This interfacial layer is modeled by Bruggeman effective medium approximations (EMAs) to contain perovskite, C60, BCP, and metal. External quantum efficiency (EQE) simulations that consider scattering, electronic losses, and the formation of nonparallel interfaces are created with input derived from ellipsometry structural-optical models and compared with experimental EQE to estimate optical losses. This nonplanar interface causes optical losses in short circuit current density (JSC) of up to 1.2 mA cm-2. A study of glass/C60/SnO2/Ag or Cu and glass/C60/BCP/Ag film stacks shows that C60 and BCP mix, but replacing BCP with SnO2 can prevent mixing between the ETLs to prevent contact between C60 and back contact metal and enable the formation of a planar interface between ETLs and back contact metals.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Revista:
ACS Appl Mater Interfaces
Assunto da revista:
BIOTECNOLOGIA
/
ENGENHARIA BIOMEDICA
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
Estados Unidos